Machine Learning for Personalized Medicine

Jean-Philippe Vert

Atelier Prospectom, Grenoble, November 21, 2014

What's in your body

1 body $=10^{14}$ human cells (and 100x more non-human cells) 1 cell $=6 \times 10^{9}$ ACGT coding for 20,000 genes

Sequencing revolution

Cost per Genome

Many various data

A cancer cell

A cancer cell

A cancer cell

Opportunities

- What is your risk of developing a cancer? (prevention)
- After diagnosis and treatment, what is the risk of relapse? (prognosis)
- What specific treatment will cure your cancer? (personalized medicine)

Example

Bad side effects
Good responders

No Responders

Machine learning formulation

Machine learning formulation

Machine learning formulation

Machine learning formulation

Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Learning with regularization

Learn

$$
f_{\beta}(x)=\beta^{\top} x
$$

by solving

$$
\min _{\beta \in \mathbb{R}^{p}} R\left(f_{\beta}\right)+\lambda \Omega(\beta)
$$

- $R\left(f_{\beta}\right)$ empirical risk
- $\Omega(\beta)$ penalty, typically:
- $\Omega(\beta)=\sum_{i=1}^{p} \beta_{i}^{2} \quad$ SVM, ridge regression, \ldots
- $\Omega(\beta)=\sum_{i=1}^{p}\left|\beta_{i}\right| \quad$ Lasso, boosting, ...

Outline

(1) Learning molecular classifiers with network information
(2) Kernel bilinear regression for toxicogenomics

Outline

(1) Learning molecular classifiers with network information
(2) Kernel bilinear regression for toxicogenomics

Joint work with...

Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev, Anne-Claire Haury, Laurent Jacob, Guillaume Obozinski

Breast cancer prognosis

A Gene-Expression Profiling

No at Rise
$\begin{array}{lllllllc}\text { Good signature } & 60 & 57 & 54 & 45 & 31 & 22 & 12 \\ \text { Poor signature } & 91 & 72 & 55 & 41 & 26 & 17 & 9\end{array}$

High risk
B St. Gallen Criteria

(van ’t Veer et al., 2002)

Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology

Some "surprising" results

Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van 't Veer* \dagger, Hongyue Dai $\dagger \ddagger$, Marc J. van de Vijver ${ }^{*} \dagger$, Yudong D. He \ddagger, Augustinus A. M. Hart ${ }^{*}$, Mao Mao \ddagger, Hans L. Peterse ${ }^{*}$, Karin van der Kooy*, Matthew J. Marton \ddagger, Anke T. Witteveen*, George J. Schreiber \ddagger, Ron M. Kerkhoven ${ }^{*}$, Chris Roberts \ddagger, Peter S. Linsley \ddagger, René Bernards* \& Stephen H. Friend \ddagger

70 genes (Nature, 2002)

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

76 genes (Lancet, 2005)

Lack of stability of signatures

(Haury et al., 2011)

Gene networks

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

Graph based penalty

$$
f_{\beta}(x)=\beta^{\top} x \quad \min _{\beta} R\left(f_{\beta}\right)+\lambda \Omega(\beta)
$$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Graph based penalty

$$
f_{\beta}(x)=\beta^{\top} x \quad \min _{\beta} R\left(f_{\beta}\right)+\lambda \Omega(\beta)
$$

Prior hypothesis

Genes near each other on the graph should have similar weigths.
An idea (Rapaport et al., 2007)

$$
\begin{gathered}
\Omega(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}, \\
\min _{\beta \in \mathbb{R}^{p}} R\left(f_{\beta}\right)+\lambda \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2} .
\end{gathered}
$$

Classifiers

Classifier

0001025094
a)

b)

Spectral penalty as a kernel

Theorem (Rapaport et al., 2007)

The function $f(x)=\beta^{\top} x$ where β is solution of

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\beta^{\top} x_{i}, y_{i}\right)+\lambda \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

is equal to $g(x)=\gamma^{\top} \Phi(x)$ where γ is solution of

$$
\min _{\gamma \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\gamma^{\top} \Phi\left(x_{i}\right), y_{i}\right)+\lambda \gamma^{\top} \gamma,
$$

and where

$$
\Phi(x)^{\top} \Phi\left(x^{\prime}\right)=x^{\top} K_{G} x^{\prime}
$$

for $K_{G}=L^{*}$, the pseudo-inverse of the graph Laplacian.

Graph Laplacian

Definition

The Laplacian of the graph is the matrix $L=D-A$.

$$
L=D-A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Pseufo-inverse of the Laplacian

$$
L^{*}=\left(\begin{array}{rrrrr}
0.88 & -0.12 & 0.08 & -0.32 & -0.52 \\
-0.12 & 0.88 & 0.08 & -0.32 & -0.52 \\
0.08 & 0.08 & 0.28 & -0.12 & -0.32 \\
-0.32 & -0.32 & -0.12 & 0.48 & 0.28 \\
-0.52 & -0.52 & -0.32 & 0.28 & 1.08
\end{array}\right)
$$

Other penalties with kernels

$$
\Phi(x)^{\top} \Phi\left(x^{\prime}\right)=x^{\top} K_{G} x^{\prime}
$$

with:

- $K_{G}=(c+L)^{-1}$ leads to

$$
\Omega(\beta)=c \sum_{i=1}^{p} \beta_{i}^{2}+\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

- The diffusion kernel:

$$
K_{G}=\exp _{M}(-2 t L)
$$

penalizes high frequencies of β in the Fourier domain.

Other penalties without kernels

- Gene selection + Piecewise constant on the graph

$$
\Omega(\beta)=\sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right|+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

- Gene selection + smooth on the graph

$$
\Omega(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

Example: classification of DNA copy number profiles

Aggressive (left) vs non-aggressive (right) melanoma

Fused lasso solution (Rapaport et al., 2008)

$$
\Omega(\beta)=\sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right|+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

Graph-based structured feature selection

Graph lasso(s)

$$
\begin{gathered}
\Omega_{1}(\beta)=\sum_{i \sim j} \sqrt{\beta_{i}^{2}+\beta_{j}^{2}}, \quad \text { (Jenatton et al., 2011) } \\
\Omega_{2}(\beta)=\sup _{\alpha \in \mathbb{R}^{p}: \forall i \sim j,\left\|\alpha_{i}^{2}+\alpha_{j}^{2}\right\| \leq 1} \alpha^{\top} \beta . \quad \text { (Jacob et al., 2009) }
\end{gathered}
$$

Lasso signature (accuracy 0.61)

Breast cancer prognosis

Graph Lasso signature (accuracy 0.64)

Breast cancer prognosis

Disjoint feature selection

- Motivation: multiclass or multitask classification problems where we want to select features specific to each class or task
- Example: recognize identify and emotion of a person from an image (Romera-Paredes et al., 2012), or hierarchical coarse-to-fine classifier (Xiao et al., 2011; Hwang et al., 2011)

Disjoint feature selection

$$
W=\left(w_{i}\right)_{i \in V} \in \mathbb{R}^{p \times V} \quad \Omega(W)=\min _{-H \leq W \leq H} \sum_{i \sim j} K_{i j}\left|h_{i}^{\top} h_{j}\right|
$$

(Vervier et al., 2014)

Example: multiclass classification of MS spectra

Features
(Vervier et al, 2014)

Outline

(1) Learning molecular classifiers with network information

(2) Kernel bilinear regression for toxicogenomics

Joint work with...

Elsa Bernard, Erwan Scornet, Yunlong Jiao, Véronique Stoven, Thomas Walter

Pharmacogenomics / Toxicogenomics

Patients with same condition

Good responders

Bad side effects

No Responders

DREAM8 Toxicogenetics challenge

156 chemicals
Genotypes from the 1000 genome project RNASeq from the Geuvadis project

Bilinear regression

- Cell line X, chemical Y, toxicity Z.
- Bilinear regression model:

$$
Z=f(X, Y)+b(Y)+\epsilon
$$

- Estimation by kernel ridge regression:

$$
\min _{f \in \mathcal{H}, b \in \mathbb{R}^{p}} \sum_{i=1}^{n} \sum_{j=1}^{p}\left(f\left(x_{i}, y_{j}\right)+b_{j}-z_{i j}\right)^{2}+\lambda\|f\|^{2},
$$

Solving in $O\left(\max (n, p)^{3}\right)$

Theorem 1. Let $Z \in \mathbb{R}^{n \times p}$ be the response matrix, and $K_{X} \in \mathbb{R}^{n \times n}$ and $K_{Y} \in \mathbb{R}^{p \times p}$ be the kernel Gram matrices of the n cell lines and p chemicals, with respective eigenvalue decompositions $K_{X}=$ $U_{X} D_{X} U_{X}^{\top}$ and $K_{Y}=U_{Y} D_{Y} U_{Y}^{\top}$. Let $\gamma=U_{X}^{\top} \mathbf{1}_{n}$ and $S \in \mathbb{R}^{n \times p}$ be defined by $S_{i j}=1 /\left(\lambda+D_{X}^{i} D_{Y}^{j}\right)$, where D_{X}^{i} (resp. D_{Y}^{i}) denotes the i-th diagonal term of D_{X} (resp. D_{Y}). Then the solution $\left(f^{*}, b^{*}\right)$ of (2) is given by

$$
\begin{equation*}
b^{*}=U_{Y} \operatorname{Diag}\left(S^{\top} \gamma^{\circ 2}\right)^{-1}\left(S^{\top} \circ\left(U_{Y}^{\top} Z^{\top} U_{X}\right)\right) \gamma \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall(x, y) \in \mathcal{X} \times \mathcal{Y}, \quad f^{*}(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{p} \alpha_{i, j}^{*} K_{X}\left(x_{i}, x\right) K_{Y}\left(y_{i}, y\right), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{*}=U_{X}\left(S \circ\left(U_{X}^{\top}\left(Z-\mathbf{1}_{n} b^{* \top}\right) U_{Y}\right)\right) U_{Y}^{\top} \tag{5}
\end{equation*}
$$

Kernel Trick

drug descriptors

Kernel Trick

Kernel Trick

Kernel Trick

Kernel choice

- $\mathrm{K}_{\text {cell }}$:
$\Longrightarrow 29$ cell line kernels tested
$\Longrightarrow 1$ kernel that integrate all information
\Longrightarrow deal with missing data

48 drug kernels tested \Longrightarrow multi-task kernels

Kernel choice

- $\mathrm{K}_{\text {cell }}$:
$\Longrightarrow 29$ cell line kernels tested
$\Longrightarrow 1$ kernel that integrate all information
\Longrightarrow deal with missing data
(1) K ${ }_{\text {drug }}$:
$\Longrightarrow 48$ drug kernels tested
\Longrightarrow multi-task kernels

Cell line data integration

Cell line data integration

Multi-task drug kernels

© Dirac
 © Multi-Task
 © Feature-based
 - Empirical
 - Integrated

independent regression for each drug

Multi-task drug kernels

- Dirac (2) Multi-Task © Feature-based - Empirical - Integrated

sharing information across drugs

Multi-task drug kernels

Linear kernel and 10 gaussian kernels based on features:

- Dirac
(2) Multi-Task
(3) Feature-based
- Empirical
© Integrated
- CDK (160 descriptors) and SIRMS (9272 descriptors)
- Graph kernel for molecules (2D walk kernel)
- Fingerprint of 2D substructures (881 descriptors)
- Ability to bind human proteins (1554 descriptors)

Multi-task drug kernels

Color Key

Empirical correlation

Multi-task drug kernels

- Dirac
© Multi-Task

$$
K_{\text {int }}=\sum_{i} K_{i}
$$

- Feature-based
- Empirical
- Integrated

Integrated kernel:

- Combine all information on drugs

29x48 kernel combinations: CV results

Cl

KsnpRbf6.txt KsnpRbf7.txt KsnpRbf8.txt KrnaseqRbf1.txt KsnpRb55.txt KsnpRbf4.txt KcovariatesSex.txt KsnpRbf2.txt KsnpRbf3.txt KsnpRbf1.txt KrnaseqRbf3.txt KrnaseqRbf2.txt KsnpMean uniform dirac KrnaseqRbf6.txt KrnaseqRbf7.txt KrnaseqRbf5.txt KrnaseqRbf8.txt KrnaseqRbf10.txt KrnaseqRbf9.txt KrnaseqRbf4.txt
KrnaseqMean KcovariatesBatch.txt KcovariatesPopulatio Kint
Kcovariates.txt

29x48 kernel combinations: CV results

Cl

KsnpRbf6.txt
KsnpRbf7.txt
KsnpRbf8.txt
KrnaseqRibf1.txt
KsnpRbf5.txt
KsnpRbf4.txt
KcovariatesSex.txt
KsnpRbf2.txt
KsnpRbf3.txt
KsnpRbf1.txt
KrnaseqRbf3.txt
KrnaseqRbf2.txt
KsnpMean
uniform
dirac
KrnaseqRbf6.txt
KrnaseqRbf7.txt KrnaseqRbf5.txt KrnaseqRb5.txt KrnaseqRbf8.txt
KrnaseqRbf10.txt KrnaseqRbf9.txt KrnaseqRbf4.txt KrnaseqMean KcovariatesBatch.txt

29x48 kernel combinations: CV results

Cl

Kernel on cell lines: CV results

integrated kernel
Mean Cl for cell line kernels

Kernel on drugs: CV results

Mean Cl for chemicals kernels

Final Submission (ranked 2nd)

Mean Cl for chemicals kernels

Empirical kernel on drugs

Integrated kernel on cell lines

Conclusion

- Many new problems and lots of data in computational genomics
- Computational constraints \Longrightarrow fast sparse models (FlipFlop)
- Small n large $p \Longrightarrow$ regularized models with prior knowledge
- Heterogeneous data integration \Longrightarrow kernel methods
- Personalized medicine promising but difficult!

Thanks

References I

Haury, A.-C., Gestraud, P., and Vert, J.-P. (2011). The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One, 6(12):e28210.
Hwang, S. J. J., Grauman, K., and Sha, F. (2011). Learning a tree of metrics with disjoint visual features. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Systems 24, pages 621-629.
Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph lasso. In ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 433-440, New York, NY, USA. ACM.
Jenatton, R., Audibert, J.-Y., and Bach, F. (2011). Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res., 12:2777-2824.
Rapaport, F., Barillot, E., and Vert, J.-P. (2008). Classification of arrayCGH data using fused SVM. Bioinformatics, 24(13):i375-i382.
Rapaport, F., Zynoviev, A., Dutreix, M., Barillot, E., and Vert, J.-P. (2007). Classification of microarray data using gene networks. BMC Bioinformatics, 8:35.
Romera-Paredes, B., Argyriou, A., Berthouze, N., and Pontil, M. (2012). Exploiting unrelated tasks in multi-task learning. J. Mach. Learn. Res. - Proceedings Track,, 22:951-959.
van 't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. (2002). Gene expression profiling predicts clinical outcome of breast cancers. Nature, 415(6871):530-536.

References II

Vervier, K., Mahé, P., DâĂŹAspremont, A., Veyrieras, J.-B., and Vert, J.-P. (2014). On learning matrices with orthogonal columns or disjoint supports. In Calders, T., Esposito, F., Hüllermeier, E., and Meo, R., editors, Machine Learning and Knowledge Discovery in Databases, volume 8726 of Lecture Notes in Computer Science, pages 274-289. Springer Berlin Heidelberg.
Wang, Y., Klijn, J., Zhang, Y., Sieuwerts, A., Look, M., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M., Yu, J., Jatkoe, T., Berns, E., Atkins, D., and Foekens, J. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancers. Lancet, 365(9460):671-679.
Xiao, L., Zhou, D., and Wu, M. (2011). Hierarchical classification via orthogonal transfer. In Getoor, L. and Scheffer, T., editors, Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011., pages 801-808. Omnipress.

