
New matrix norms for structured matrix estimation

Jean-Philippe Vert

Optimization and Statistical Learning workshop
Les Houches, France, Jan 11-16, 2015



Outline

1 Atomic norms

2 Sparse matrices with disjoint column supports

3 Low-rank matrices with sparse factors

http://www.homemade-gifts-made-easy.com/make-paper-lanterns.html

http://www.homemade-gifts-made-easy.com/make-paper-lanterns.html


Outline

1 Atomic norms

2 Sparse matrices with disjoint column supports

3 Low-rank matrices with sparse factors



Atomic Norm (Chandrasekaran et al., 2012)

Definition
Given a set of atoms A, the associated atomic norm is

‖x‖A = inf{t > 0 | x ∈ t conv(A)}.

NB: This is really a norm if A is centrally symmetric and spans Rp

Primal and dual form of the norm

‖x‖A = inf

{∑

a∈A
ca | x =

∑

a∈A
ca a, ca > 0, ∀a ∈ A

}

‖x‖∗A = sup
a∈A
〈a, x〉



Examples

Vector `1-norm: x ∈ Rp 7→ ‖x‖1

A =
{
± ek | 1 ≤ k ≤ p

}

Matrix trace norm: Z ∈ Rm1×m2 7→ ‖Z‖∗ (sum of singular value)

A =
{

ab> : a ∈ Rm1 ,b ∈ Rm2 , ‖a ‖2 = ‖b ‖2 = 1
}



Group lasso (Yuan and Lin, 2006)

For x ∈ Rp and G = {g1, . . . ,gG} a partition of [1,p]:

‖ x ‖1,2 =
∑

g∈G
‖ xg ‖2

is the atomic norm associated to the set of atoms

AG =
⋃

g∈G
{u ∈ Rp : supp(u) = g, ‖u ‖2 = 1}

G = {{1,2} , {3}}
‖ x ‖1,2 = ‖(x1, x2)>‖2 + ‖x3‖2

=
√

x2
1 + x2

2 +
√

x2
3



Group lasso with overlaps

How to generalize the group lasso when the groups overlap?
Set features to zero by groups (Jenatton et al., 2011)

‖ x ‖1,2 =
∑

g∈G
‖ xg ‖2

Select support as a union of groups (Jacob et al., 2009)

‖ x ‖AG ,
see also MKL (Bach et al., 2004)

G = {{1,2} , {2,3}}
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Columns with disjoint supports

X =

Motivation: multiclass or multitask classification problems where
we want to select features specific to each class or task
Example: recognize identify and emotion of a person from an
image (Romera-Paredes et al., 2012), or hierarchical
coarse-to-fine classifier (Xiao et al., 2011; Hwang et al., 2011)



From disjoint supports to orthogonal columns

X =

Two vectors v1 and v2 have disjoint support iff |v1| and |v2| are
orthogonal
If Ωortho(X ) is a norm to estimate matrices with orthogonal
columns, then

Ωdisjoint (X ) = Ωortho(|X |) = min
−W≤X≤W

Ωortho(W )

is a norm to estimate matrices with disjoint column supports.
How to estimate matrices with orthogonal columns?
NOTE: more general than orthogonal matrices



Penalty for orthogonal columns

For X = [x1, . . . , xp] ∈ Rn×p we want

x>i xj = 0 for i 6= j

A natural "relaxation":

Ω(X ) =
∑

i 6=j

∣∣∣ x>i xj

∣∣∣

But not convex



Convex penalty for orthogonal columns

ΩK (X ) =

p∑

i=1

Kii‖ xi ‖2 +
∑

i 6=j

Kij

∣∣∣ x>i xj

∣∣∣

Theorem (Xiao et al., 2011)

If K̄ is positive semidefinite, then ΩK is convex, where

K̄ij =

{
|Kii | if i = j ,
−
∣∣Kij

∣∣ otherwise.



Can we be tighter?

ΩK (X ) =

p∑

i=1

‖ xi ‖2 +
∑

i 6=j

Kij

∣∣∣ x>i xj

∣∣∣



Can we be tighter?

ΩK (X ) =

p∑

i=1

‖ xi ‖2 +
∑

i 6=j

Kij

∣∣∣ x>i xj

∣∣∣

Let O be the set of matrices of unit Frobenius norm, with
orthogonal columns

O =
{

X ∈ Rn×p : X>X is diagonal and Trace(X>X ) = 1
}

Note that
∀X ∈ O, ΩK (X ) = 1

The atomic norm ‖X ‖O associated to O is the tightest convex
penalty to recover the atoms in O!



Optimality of ΩK for p = 2

Theorem (Vervier, Mahé, d’Aspremont, Veyrieras and V., 2014)

For any X ∈ Rn×2,
‖X ‖2O = ΩK (X )

with

K =

(
1 1
1 1

)
.



Case p > 2

ΩK (X ) 6= ‖X ‖2O
But sparse combinations of matrices in O may not be interesting
anyway...

Theorem (Vervier et al., 2014)
For any p ≥ 2, let K be a symmetric p-by-p matrix with non-negative
entries and such that,

∀i = 1, . . . ,p Kii =
∑

j 6=i

Kij .

Then
ΩK (X ) =

∑

i<j

Kij‖ (xi , xj) ‖2O .



Simulations

Regression Y = XW + ε, W has disjoint column support, n = p = 10

●

●

●

●

●
● ●

●
●

10 20 30 40 50

0.
30

0.
35

0.
40

Training set size

M
S

E

● Ridge Regression
LASSO
Xiao
Disjoint Supports

10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Training set size

di
sj

oi
nt

ne
ss

LASSO
Disjoint Supports



Example: multiclass classification of MS spectra
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Low-rank matrices with sparse factors

X =

X =
r∑

i=1

uiv>i

factors not orthogonal a priori
6= from assuming the SVD of X is sparse



Dictionary Learning

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi − Dαi‖22 + λ

n∑

i=1

‖αi‖1 s.t. ∀j , ‖dj‖2 ≤ 1.

Dictionary Learning

XT D α= .

e.g. overcomplete dictionaries
for natural images

sparse decomposition

(Elad and Aharon, 2006)



Dictionary Learning /Sparse PCA

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi − Dαi‖22 + λ

n∑

i=1

‖αi‖1 s.t. ∀j , ‖dj‖2 ≤ 1.

Dictionary Learning

XT D α= .

e.g. overcomplete dictionaries
for natural images

sparse decomposition

(Elad and Aharon, 2006)

Sparse PCA

X
T α= .D

e.g. microarray data

sparse dictionary

(Witten et al., 2009; Bach et al.,
2008)

Sparsity of the loadings vs sparsity of the dictionary elements



Applications

Low rank factorization with “community structure"
Modeling clusters or community structure in social networks or
recommendation systems (Richard et al., 2012).
Subspace clustering (Wang et al., 2013)
Up to an unknown permutation, X> =

[
X>1 . . . X>K

]
with Xk low rank, so that there exists a low rank matrix Zk such
that Xk = ZkXk . Finally,

X = ZX with Z = BkDiag(Z1, . . . ,ZK ).

Sparse PCA from Σ̂n

Sparse bilinear regression

y = x>Mx ′ + ε



Existing approaches

Bi-convex formulations

min
U,V
L(UV>) + λ(‖U‖1 + ‖V‖1),

with U ∈ Rn×r , V ∈ Rp×r .

Convex formulation for sparse and low rank

min
Z
L(Z ) + λ‖Z‖1 + µ‖Z‖∗

Doan and Vavasis (2013); Richard et al. (2012)
factors not necessarily sparse as r increases.



A new formulation for sparse matrix factorization

Assumptions:
X =

r∑

i=1

aib>i

All left factors ai have support of size k .
All right factors bi have support of size q.

Goals:

Propose a convex formulation for sparse matrix factorization that
is able to handle multiple sparse factors
permits to identify the sparse factors themselves
leads to better statistical performance than `1/trace norm.

Propose algorithms based on this formulation.



The (k ,q)-rank of a matrix

Sparse unit vectors:

An
j = {a ∈ Rn : ‖a‖0 ≤ j , ‖a‖2 = 1}

(k ,q)-rank of a m1 ×m2 matrix Z :

rk ,q(Z ) = min

{
r : Z =

r∑

i=1

ciaib>i , (ai ,bi , ci) ∈ Am1
k ×A

m2
q ×R+

}

= min

{
‖ c ‖0 : Z =

∞∑

i=1

ciaib>i , (ai ,bi , ci) ∈ Am1
k ×A

m2
q ×R+

}

Z = rk ,q(Z ) = 3



The (k ,q) trace norm (Richard et al., 2014)

For a matrix Z ∈ Rm1×m2 , we have

(1,1)-rank (k ,q)-rank (m1,m2)-rank

combinatorial penality ‖Z‖0

rk ,q(Z )

rank(Z )

convex relaxation ‖Z‖1

Ωk ,q(Z )

‖Z‖∗

The (k ,q) trace norm Ωk ,q(Z ) is the atomic norm associated with

Ak ,q :=
{

ab> | a ∈ Am1
k , b ∈ Am2

q
}
,

namely:

Ωk ,q(Z ) = inf

{
‖c‖1 : Z =

∞∑

i=1

ciaib>i , (ai ,bi , ci) ∈ Am1
k ×A

m2
q ×R+

}



The (k ,q) trace norm (Richard et al., 2014)
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‖Z‖∗
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{

ab> | a ∈ Am1
k , b ∈ Am2

q
}
,

namely:

Ωk ,q(Z ) = inf

{
‖c‖1 : Z =

∞∑

i=1

ciaib>i , (ai ,bi , ci) ∈ Am1
k ×A

m2
q ×R+

}



The (k ,q) trace norm (Richard et al., 2014)

For a matrix Z ∈ Rm1×m2 , we have

(1,1)-rank (k ,q)-rank (m1,m2)-rank

combinatorial penality ‖Z‖0 rk ,q(Z ) rank(Z )

convex relaxation ‖Z‖1 Ωk ,q(Z ) ‖Z‖∗

The (k ,q) trace norm Ωk ,q(Z ) is the atomic norm associated with

Ak ,q :=
{

ab> | a ∈ Am1
k , b ∈ Am2

q
}
,

namely:

Ωk ,q(Z ) = inf

{
‖c‖1 : Z =

∞∑

i=1

ciaib>i , (ai ,bi , ci) ∈ Am1
k ×A

m2
q ×R+

}



Some properties of the (k ,q)-trace norm

Nesting property:

Ωm1,m2(Z ) = ‖Z‖∗ ≤ Ωk ,q(Z ) ≤ ‖Z‖1 = Ω1,1(Z )

Dual norm and reformulation
Let ‖ · ‖op denote the operator norm.
Let Gk ,q =

{
(I, J) ⊂

[[
1,m1

]]
×
[[
1,m2

]]
, |I| = k , |J| = q

}

Given that ‖x‖∗A = supa∈A 〈a, x〉, we have

Ω∗k ,q(Z ) = max
(I,J)∈Gk,q

∥∥ZI,J
∥∥

op and

Ωk ,q(Z ) = inf





∑

(I,J)∈Gk,q

∥∥A(IJ)
∥∥
∗ : Z =

∑

(I,J)∈Gk,q

A(IJ) , supp(A(IJ)) ⊂ I×J







Vector case

When q = m2 = 1, Ωk ,1(x) is the k -support norm of Argyriou et al.
(2012), i.e., the overlapping group lasso with all groups of size k .



Statistical dimension (Amelunxen et al., 2013)

•

•

•

Z?

Y = Z? + ε

Ẑ

Z? + TΩ(Z?)

{Ω(·) ≤ 1}

www.cmap.polytechnique.fr/ giraud/MSV/LectureNotes.pdf

2

figure inspired by Amelunxen et al. (2013)

S(Z ,Ω) :=E
[∥∥ΠTΩ(Z )(G)

∥∥2
Fro

]
,



Nullspace property and S (Chandrasekaran et al., 2012)

PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 7

x0 +null(A)

{x : f (x) ≤ f (x0)}

x0

x0 +D( f , x0)

x0 +null(A)

{x : f (x) ≤ f (x0)}

x0

x0 +D( f , x0)

FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone D( f , x0) and the null space null(A) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.

The function f is called a regularizer, and the formulation (2.4) is called a regularized linear inverse problem.
To illustrate the kinds of regularizers that arise in practice, we highlight two familiar examples.

Example 2.5 (Sparse vectors). When the vector x0 is known to be sparse, we can minimize the `1 norm to
look for a sparse solution to the inverse problem. Repeating (1.2), we have the optimization

minimize ‖x‖1 subject to z0 = Ax . (2.5)

This approach was proposed by Chen et al. [CDS01], motivated by work in geophysics [CM73, SS86].

Example 2.6 (Low-rank matrices). Suppose that X0 is a low-rank matrix, and we have acquired a vector of
measurements of the form z0 =A (X0), where A is a linear operator. This process is equivalent with (2.3).
We can look for low-rank solutions to the linear inverse problem by minimizing the Schatten 1-norm:

minimize ‖X ‖S1 subject to z0 =A (X ). (2.6)

This method was proposed in [RFP10], based on ideas from control [MP97] and optimization [Faz02].

We say that the regularized linear inverse problem (2.4) succeeds at solving (2.3) when the convex program
has a unique minimizer x̂ that coincides with the true unknown; that is, x̂ = x0. To develop conditions for
success, we introduce a convex cone associated with the regularizer f and the unknown x0.

Definition 2.7 (Descent cone). The descent cone D( f , x) of a proper convex function f : Rd → R at a point
x ∈Rd is the conic hull of the perturbations that do not increase f near x.

D( f , x) :=
⋃
τ>0

{
y ∈Rd : f (x +τy) ≤ f (x)

}
.

The descent cones of a proper convex function are always convex, but they may not be closed. The descent
cones of a smooth convex function are always halfspaces, so this concept inspires the most interest when the
function is nonsmooth.

To characterize when the optimization problem (2.4) succeeds, we write the primal optimality condition in
terms of the descent cone; cf. [RV08, Sec. 4] and [CRPW12, Prop. 2.1].

Fact 2.8 (Optimality condition for linear inverse problems). Let f be a proper convex function. The vector x0 is
the unique optimal point of the convex program (2.4) if and only if D( f , x0)∩null(A) = {0}.

Figure 2.3 illustrates the geometry of this optimality condition. Despite its simplicity, this result forges a
crucial link between the convex optimization problem (2.4) and the theory of conic integral geometry.

Figure from Amelunxen et al. (2013)

Exact recovery from random measurements
With X : Rp → Rn rand. lin. map from the std Gaussian ensemble

Ẑ = argmin
Z

Ω(Z ) s.th. X (Z ) = y

is equal to Z ? w.h.p. as soon as n ≥ S(Z ?,Ω).



Statistical dimension of the (k ,q)-trace norm

Theorem (Richard et al., 2014)
Let A = ab> ∈ Ak ,q with I0 = supp(a) and J0 = supp(b).

Let γ(a,b) := (k min
i∈I0

a2
i ) ∧ (q min

j∈J0
b2

j ),

we have

S(A,Ωk ,q) ≤ 322
γ2 (k + q + 1) +

160
γ

(k ∨ q) log (m1 ∨m2) .

Case m1 = m2, k = q:

S(A,Ωk ,q) ≤ 322
γ2 (2k + 1) +

160
γ

k log (m) .



Summary of results for statistical dimension

Matrix norm S Vector norm S

`1 Θ(kq log m1m2
kq ) `1 Θ(k log p

k )

trace-norm Θ(m1 + m2) `2 p

`1 + trace Ω
(
kq ∧ (m1 + m2)

)
elastic net Θ(k log p

k )

(k ,q)-trace O((k ∨ q) log (m1 ∨m2)) k -support Θ(k log p
k )

Lower bound for `1+ trace norm based on a result of Oymak et al. (2012)
f = Θ(g) means (f = O(g)&g = O(f ))

f = Ω(g) means g = O(f )



Working set algorithm

min
Z
L(Z ) + λΩk ,q(Z )

Given a working set S of blocks (I, J), solve the restricted problem

min
Z , (A(IJ))(I,J)∈S

L(Z ) + λ
∑

(I,J)∈S

∥∥A(IJ)
∥∥
∗

Z =
∑

(I,J)∈S
A(IJ) , supp(A(IJ)) ⊂ I×J.

Proposition
The global problem is solved by a solution ZS of the restricted problem
if and only if

∀(I, J) ∈ Gk ,q,
∥∥∥
[
∇L(ZS)

]
I,J

∥∥∥
op
≤ λ. (?)



Working set algorithm

Active set algorithm
Iterate:

1 Solve the restricted problem by block coordinate descent (Tseng
and Yun, 2009)

2 Look for (I, J) that violates (?)
If none exists, terminate the algorithm !
Else add the found (I, J) to S

Problem: step 2 require to solve a rank-1 SPCA problem→ NP-hard

Idea: Leverage the work on algorithms that attempt to solve
rank-1 SPCA like

convex relaxations,
truncated power iteration method

to heuristically find blocks potentially violating the constraint.



Denoising results

Z ∈ R1000×1000 with Z =
∑r

i=1 aib>i + σG and aib>i ∈ Ak ,q

k = q
σ2 small⇒ MSE ∝ S(ab>,Ωk ,q) σ2
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Denoising results

[Z ∈ R300×300 and σ2 small⇒ MSE ∝ S(ab>,Ωk,q) σ2]
r = 3 atoms, with or without overlap
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Empirical results for sparse PCA

Sample covariance Trace `1 Trace + `1 Sequential ⌦k,⌫
4.20 ± 0.02 0.98 ± 0.01 2.07 ± 0.01 0.96 ± 0.01 0.93 ± 0.08 0.59 ± 0.03

Table 3: Relative error of covariance estimation with different methods.

• ⌦k,⌫ penalty. The following optimization problem, which is a proximal operator computation,
is solved using the active set algorithm:

min
Z⌫0

1

2

���Z � ⌃̂n

���
2

Fro
+ �⌦k,⌫(Z) ,

with ⌦k,⌫ the gauge associated with Ak,� already introduced in Section 3.4. The two param-
eters of this method are � > 0 and k 2 N\{0}.

We report the relative errors
���⌃̂� ⌃?

���
Fro

/ k⌃?kFro over 10 runs of our experiments in Table 3, and
a representation of the estimated matrices can be found in Figure 3. We observe that sparse PCA
methods using ⌦k,⌫ and also the sequential method using deflation steps outperform spectral and
`1 baselines. In addition, penalizing ⌦k,⌫ is superior to the sequential approach. This was expected
since our algorithm minimizes a loss function that is close to the test errors reported, whereas the
sequential scheme does not optimize a well-defined objective.

7 Conclusion

In this work, we proposed two new convex penalties, the (k, q)-trace norm and the (k, q)-CUT norm,
specifically tailored to the estimation of low-rank matrices with sparse factors. Our motivation
for proposing such convex formulations for sparse low-rank matrix inference was twofold. First, it
allowed us to consider algorithmic schemes that are better understood when a problem is formulated
as a convex optimization problem, even though the complexity of solving the problem exactly
remains super-polynomial. Second, using convex geometry allowed us to provide sample complexity
and statistical guarantees, and notably to show that the proposed estimators have much better
statistical dimension than more standard convex combinations of the `1 and trace norms. We
observed that the improvement exists only for matrices: for sparse vectors, using our penalty (which
boils down to the k-support norm in this case) does not improve over the standard `1 norm, in terms
of statistical dimension increase rate.
One limitation of this work is that we assume that the sparsity of the factors is known and fixed.
Lifting this constraint and investigating procedures that can adapt to the size of the blocks (like the
`1 norm adapts to the size of the support) is an interesting direction for future research. Another
interesting direction is to use the nuclear norm formulation of the (k, q)-trace norm as in Lemma
10 to optimize the regularized problem.
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Conclusion

Atomic norms for structured sparsity
Gain in statistical performance at the expense of algorithmic
complexity (convex but NP-hard)
The structure of the convex problem may be exploited to devise
new efficient heuristics or relaxations
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