Structured feature selection

Jean-Philippe Vert

Jan 27, 2015

CBIO at work

Rationale of the team

Machine Learning?

ParisTech

Example: Toxicogenetics / Pharmacogenomics

Toxicogenetics Challenge Data

Chemical
descriptors
10 K attributes

Genotypes

| Cytotoxicity
 data (EC
 10 |
| :---: | :---: | :---: |
| Training Set |

156 chemicals

Problem: n << p

> Toxicogenetics Challenge Data

$\mathrm{n}=5 \mathrm{E} 4$

156 chemicals

Example: Patient stratification

Problem again: $n \ll p$

Patients with same condition

Good responders
$\mathrm{n}=1 \mathrm{E} 2$ ~ 1 E 4
(patients)
$p=1 E 4 \sim 1 E 7$
(genes, mutations, copy numbers, ...)

Maniaus ilit Inserm

Feature Selection

.
Instivu national de la sonte e d de la recterche medicale

Feature Selection techniques

1) Filter methods: test association between features and response one by one (eg: correlation, t-test, ...)
2) Wrapper methods: search a subset of features such that the classifier works well (best subset selection, forward search, recursive feature elimination...)
3) Embedded methods: directly optimize sparse models (eg: lasso, elastic net, ...)

But...

Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van 't Veer ${ }^{\star} \dagger$, Hongyue Dai $\dagger \ddagger$, Marc J. van de Vijver ${ }^{\star} \dagger$, Yudong D. He \ddagger, Augustinus A. M. Hart*, Mao Mao \ddagger, Hans L. Peterse*, Karin van der Kooy ${ }^{\star}$, Matthew J. Marton \ddagger, Anke T. Witteveen*, George J. Schreiber \ddagger, Ron M. Kerkhoven ${ }^{\star}$, Chris Roberts \ddagger, Peter S. Linsley \ddagger, René Bernards ${ }^{\star}$ \& Stephen H. Friend \ddagger

70 genes (Nature, 2002)

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

Yixin Wang, Jan G M Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look, Fei Yang, Dmitri Talantov, Mieke Timmermans, Marion E Meijer-van Gelder, Jack Yu, Tim Jatkoe, Els MJJ Berns, David Atkins, John A Foekens

76 genes (Lancet, 2005)

3 genes in common

and nothing seems to work better

(Haury et al., 2011)

Give up machine learning and go to Tahiti?

Sparsity with the LASSO

- Linear model
$f(x)=w 1 x 1+w 2 x 2+\ldots+w P x P$
- Sparse when wK=0 for many K’s
- Learn a sparse model by minimize Error(w)
such that
w is in the grey box 0
- O is convex -> efficient algorithm
- O has edges -> sparsity

Structured sparsity with atomic norms

1) Choose a set of ATOMS

Structured sparsity with atomic norms

1) Choose a set of ATOMS
2) Take the convex hull O

Structured sparsity with atomic norms

1) Choose a set of ATOMS
2) Take the convex hull
3) Minimize Error(w) such that w is in the convex hull

The solution is a sparse model over the ATOMS!

Quizz: where are the atoms?

ParisTech

Quizz (cont.)

Trace norm

to learn matrices with small rank

Graph Lasso (Jacob et al. 2009) to select features that tend to be connected over a given network

Breast cancer prognosis signature with Lasso (accuracy=61\%)

Breast cancer prognosis signature with Graph Lasso (accuracy=64\%)

CDC45L- ORC6L VEGFA- VEGFB PCSK6- BTG2 ALDH3A2-C6orf35 AURKB-BIRC5 PSMD2- ZBTB16 PLP2 BCAP31 FADS1 - FADS2

Learning sparse models with disjoint support?

Motivation

- Multiclass or multi-task classification problems
- Eg: predict identity and emotion from a face
- Eg: cascade of classifiers

An atomic norm (ECML 2014)

Application: Microbial identification from MALDI-TOF MS spectra

MINES
ParisTech

Learning low-rank matrices with sparse factors ?

An atomic norm (NIPS 2014)

E. Richard

$$
X=\sum_{i=1}^{r} u_{i} v_{i}^{\top}
$$

An atomic norm (NIPS 2014)

Theorem

Learning with this norm is « statistically optimal » to infer sparse low-rank matrices

But

Convex but NP-hard

Preliminary results on sparse PCA

Sample covariance	Trace	ℓ_{1}	Trace $+\ell_{1}$	Sequential	$\Omega_{k, \succeq}$
4.20 ± 0.02	0.98 ± 0.01	2.07 ± 0.01	0.96 ± 0.01	0.93 ± 0.08	$\mathbf{0 . 5 9} \pm \mathbf{0 . 0 3}$

Conclusion Make your Atomic norm !

Homemade Gifts Made Easy

Welcome
Home
Latest Gift Ideas
Free Newsletter

Occasions
Mother's Day
Valentine's Day
Christmas
Easter

How to Make Paper Lanterns

Looking for instructions on how to make paper lanterns? My husband designed an easy template for making paper lanterns in a cute round shape. They look a bit oriental, don't you think?
 (a)

Search this site:

Sponsored links
Advertise with us

FREE Homemade Gifts Newsletter!
http://www.homemade-gifts-made-easy.com/make-paper-lanterns.html

