Machine Learning for Personalized Genomics

Jean-Philippe Vert

C3BI Kick-off meeting, Institut Pasteur, Paris, March 16, 2015

Institut Curie / Inserm U900 / MINES ParisTech partnership

Inserm

- A joint lab about ``Cancer computational genomics, bioinformatics, biostatistics and epidemiology"
- Located in Institut Curie, a major hospital and cancer research centre in Europe, and MINES ParisTech

4 teams + 1 platform

Systems Biology (Barillot):

- Modelling, simulating biological systems
- Building an in silico atlas of cancer pathways

Clinical Biostatistics (Asselain / Paoletti):

- Clinical trials for targeted therapies
- Predictive biomarkers

Cancer Genetic Epidemiology (Andrieu):

Genetic and environmental factors in breast cancer

Machine learning (Vert):

Learning from « big omics data » for personalized medicine

Human genome project (1990-2003)

- Goal: sequence the 3,000,000,000 base pairs of the human genome
- Consortium of 20 laboratories, 6 countries
- 13 years, \$3,000,000,000

The **second** revolution

A flood of omics data

Interactome

Mutations
Structural variations

Genome

Phenome

Transcriptome

Epigenome

All cancers are different

Cancer: different views

Big data!

http://aws.amazon.com/1000genomes/

Opportunities

Diagnosis

Response to drugs

Rationale of my team

Machine learning

Mecanisms, drug targets

Drug design

Personalized medicine

Machine Learning?

Example: Patient stratification

Problem: n << p

No Responders

Good responders

Feature Selection

Example: Breast cancer prognostic signature

But...

Prior knowledge: gene network

Can we « force » the signature to be « coherent » with a known network?

Example: the graph lasso

 Step 1: Using the network, define a subset of « candidate » signatures

• Step 2: Among the candidates, find the best signature to explain the data

Classical signature

The graph lasso signature

Example: Toxicogenetics / Pharmacogenomics

Toxicogenetics Challenge Data

Chemical descriptors

Genotypes RNASeq

STOTILE

46K transcripts

Not
available

Not
available

884 Cell Lines

156 chemicals

Problem: n << p

Crowd-sourcing initiatives

Our approach

Cell line descriptors (30 kernels)

Chemical descriptors (49 kernels)

- Descriptors of chemical structures
- Multitask kernels
- Empirical correlation
- Integrated kernel

Learning occurs...

Final submission (ranked 2nd)

Empirical kernel on drugs

Integrated kernel on cell lines

Conclusion

- Lots of data due to technological progress
- Opportunities: precision medicine, quantitative biology
- Challenges:
 « small N », weak
 signal, complex
 systems

Thanks!

BIOMÉ RIEUX

