Machine Learning for Personalized Genomics

Jean-Philippe Vert

Inserm
 Institut matianal de la seantée et dp la recherrohe médicalo

C3BI Kick-off meeting, Institut Pasteur, Paris, March 16, 2015

Institut Curie / Inserm U900 / MINES ParisTech partnership

- A joint lab about " `Cancer computational genomics, bioinformatics, biostatistics and epidemiology"
- Located in Institut Curie, a major hospital and cancer research centre in Europe, and MINES ParisTech

4 teams + 1 platform

Systems Biology (Barillot):

- Modelling, simulating biological systems
- Building an in silico atlas of cancer pathways

Clinical Biostatistics (Asselain / Paoletti):

- Clinical trials for targeted therapies
- Predictive biomarkers

Cancer Genetic Epidemiology (Andrieu):

- Genetic and environmental factors in breast cancer

Machine learning (Vert):

- Learning from « big omics data » for personalized medicine

Human genome project (1990-2003)

- Goal: sequence the $3,000,000,000$ base pairs of the human genome
- Consortium of 20 laboratories, 6 countries
- 13 years, $\$ 3,000,000,000$

A flood of omics data

Interactome

Mutations
Structural variations

Transcriptome

Epigenome

Phenome

All cancers are different

Cancer: different views

Big data!

- http://aws.amazon.com/1000genomes/

P4. Medicine

- PREDICT • PREVENT • PERSONALIZE • PARTICIPATE

(等) (1) 18

Opportunities

Diagnosis

Response to drugs

Rationale of my team

Machine Learning?

Example: Patient stratification

Problem : n << p

Feature Selection

Example:

Breast cancer prognostic signature

A Gene-Expression Profiling

> No. AT RISK
$\begin{array}{llllllll}\text { Good signature } & 60 & 57 & 54 & 45 & 31 & 22 & 12\end{array}$ $\begin{array}{llllllll}\text { Poor signature } & 91 & 72 & 55 & 41 & 26 & 17 & 9\end{array}$

B St. Gallen Criteria

No. AT RISK
Low risk High risk
$\begin{array}{ccccccc}22 & 22 & 21 & 17 & 9 & 5 & 2 \\ 129 & 107 & 88 & 69 & 48 & 34 & 19\end{array}$

But...

Gene expression profiling predicts clinical outcome of breast cancer

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

Laura J
Yudong
Karin vi
George
Peter S.

*Divisio
and Cen
121 Ples
\ddagger Rosetta

Prior knowledge: gene network

Can we «force» the signature to be «coherent» with a known network?

Example: the graph lasso

- Step 1: Using the network, define a subset of « candidate » signatures

- Step 2: Among the candidates, find the best signature to explain the data

Classical signature

The graph lasso signature

Example: Toxicogenetics / Pharmacogenomics

Toxicogenetics Challenge Data

Chemical
descriptors
10 attributes

156 chemicals

Problem: n << p

Toxicogenetics
Challenge Data

$$
\mathrm{n}=5 \mathrm{E} 4
$$

884 Cell Lines
$p=1 E 10$

Crowd-sourcing initiatives

Our approach

Cell line descriptors (30 kernels)

Chemical descriptors (49 kernels)

- Descriptors of chemical structures
- Multitask kernels
- Empirical correlation
- Integrated kernel

Learning occurs...

Final submission (ranked $2^{\text {nd }}$)

Empirical kernel on drugs

Integrated kernel on cell lines

RECOMB/ISCB Conference on Regulatory and Systems Genomics, with DREAM Challenges 2013

Conclusion

- Lots of data due to technological progress
- Opportunities: precision medicine, quantitative biology
- Challenges:
«small N », weak signal, complex systems

Thanks!

