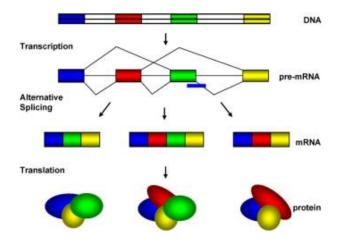
A Convex Formulation for Joint RNA Isoform Detection and Quantification from Multiple RNA-Seq Samples

Jean-Philippe Vert

Statistics and Genomics Seminar, UC Berkeley, April 15, 2015

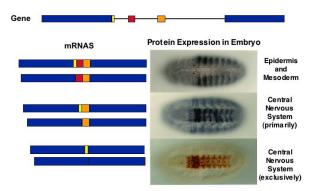
Elsa Bernard Laurent Jacob Julien Mairal Eric Viara

Alternative splicing: 1 gene = many proteins



In human, 28k genes give 120k known transcripts (Pal et al., 2012)

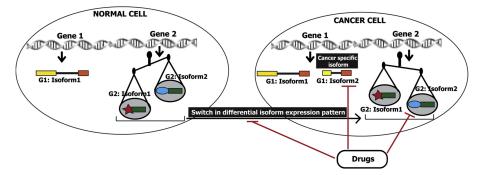
Alternative splicing matters: developmental regulation in Drosophila



Alternative Splicing of Ultrabithorax Transcripts

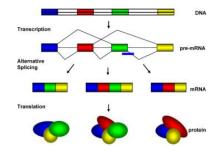
http://orchid.bio.cmu.edu/research.html

Alternative splicing matters: drug targets



(Pal et al., 2012)

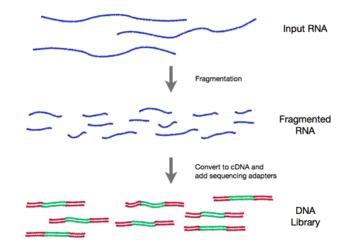
The isoform identification and quantification problem



Given one or several biological samples (e.g., cancer tissues), can we:

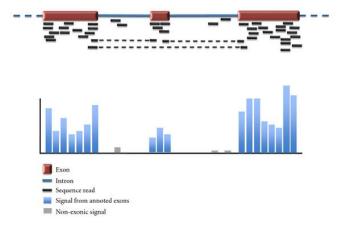
- identify the isoform(s) of each gene present in the samples?
- Quantify their abundances?

RNA-seq measures mRNA abundance by sequencing short fragments



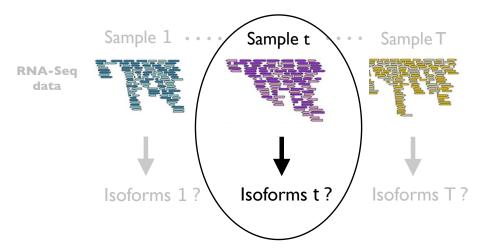
http://rnaseq.uoregon.edu

RNA-seq and alternative splicing



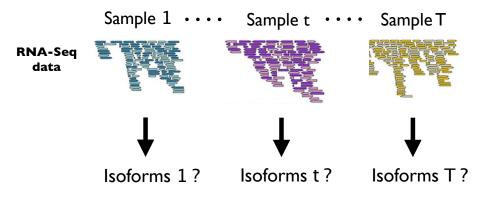
(Costa et al., 2011)

The one-sample case



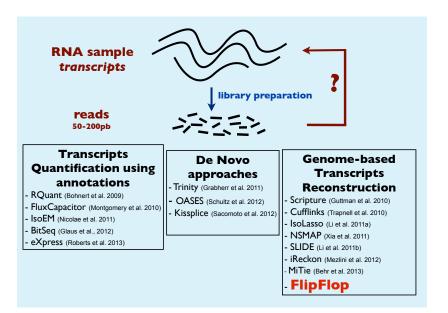
Can we perform accurate de novo isoform reconstruction for one given sample?

The multi-sample case

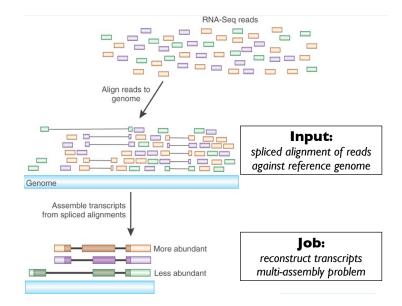


Can we improve isoform detection by using several samples simultaneously?

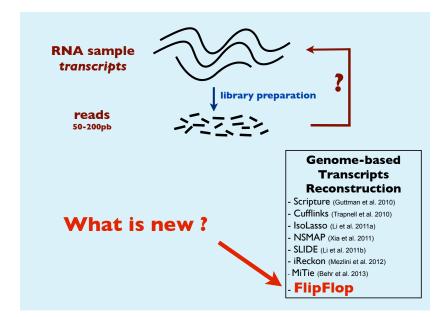
From RNA-Seq reads to isoforms



Genome-based isoform reconstruction



Contributions?



- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem

flow method

- adapted to LONG READS
- R package

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem
- adapted to LONG READS particular splicing graph

- R package

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem
- adapted to long reads
- R package

Contributions

Home Install Help

Home » Bioconductor 3.0 » Software Packages » flipflop

flipflop

Fast lasso-based isoform prediction as a flow problem

Bioconductor version: Release (3.0)

Flipflop discovers which isoforms of a gene are expressed in a given sample together with their abundances, based on RNA-Seq read data.

Author: Elsa Bernard, Laurent Jacob, Julien Mairal and Jean-Philippe Vert

Maintainer: Elsa Bernard <elsa.bernard at mines-paristech.fr>

Citation (from within R, enter citation("flipflop")):

Bernard E, Jacob L, Mairal J and Vert J (2014), "Efficient RNA isoforms identification and quantification from RNA-Seq data with network flows." *Bioinformatics*, **30**, pp. 2447-2455. <u>http://bioinformatics.oxfordjournals.org/content/30/17/2447.</u>

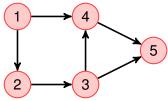
Installation

To install this package, start R and enter:

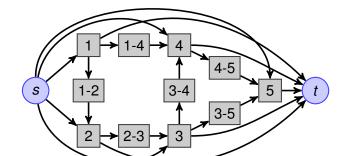
source("http://bioconductor.org/biocLite.R")
biocLite("flipflop")

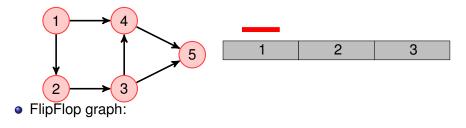
Isoforms are Paths in a Graph

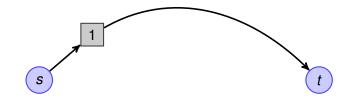
• Splicing graph for a gene with 5 exons:

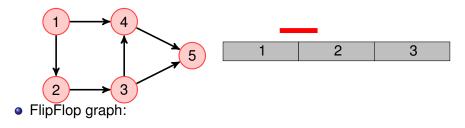


• FlipFlop graph: 1 type of read \leftrightarrow 1 node

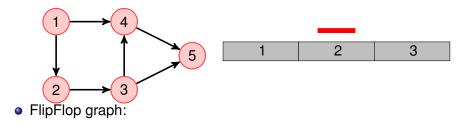


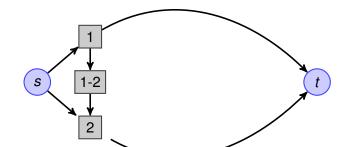


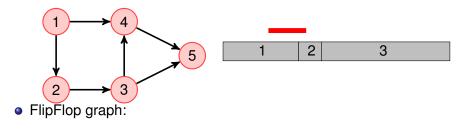


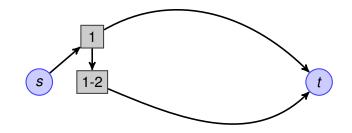


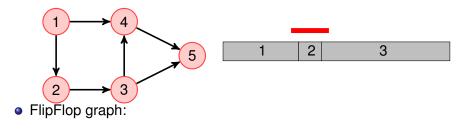


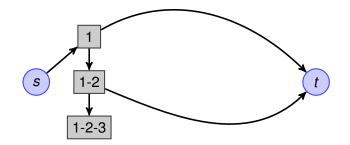


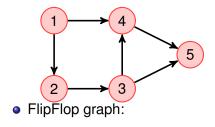


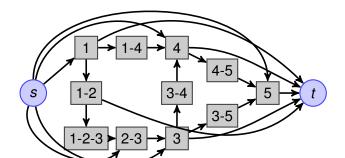


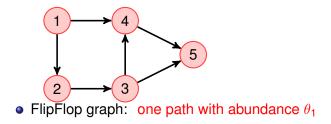


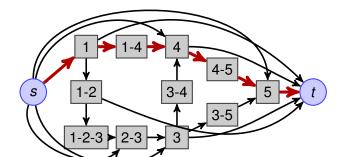


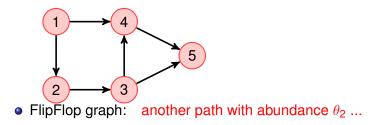


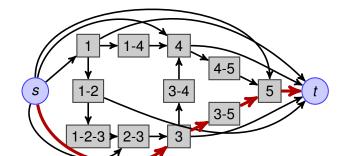












n exons $\rightarrow \sim 2^n$ paths/candidate isoforms

feature selection problem with $\sim 10^3$ candidates for 10 exons and $\sim 10^6$ for 20 exons

Minimal path cover

Cufflinks

Regularization approach

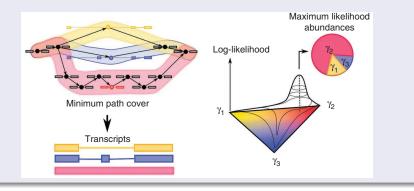
 IsoLasso, NSMAP, SLIDE, iReckon, MiTie, FlipFlop

Select a small number of paths?

Cufflinks strategy

A two-step approach

- find a set of *minimal paths* to explain read positions (independent from read counts)
- estimate isoform abundances using read counts



Regularization approach

- Suppose there are c candidate isoforms (c large)
- 2 Let θ the unknown c-dimensional vector of abundance
- Let L(φ) quantify whether θ explains the observed read counts
 e.g., Poisson negative log-likelihood:

$$\mathcal{L}(\theta) = \sum_{\text{node } u} -\log p(X_u) \text{ with } X_u \sim \mathcal{P}(\delta_u) \text{ and } \delta_u \propto l_u \sum_{\text{path } p \ni u} \theta_p$$

Regularization-based approaches try to solve:

 $\min_{\theta \in \mathbb{R}^c_+} \mathcal{L}(\theta) \text{ such that } \theta \text{ is sparse}$

Regularization approach

- Suppose there are c candidate isoforms (c large)
- 2 Let θ the unknown c-dimensional vector of abundance
- Let L(φ) quantify whether θ explains the observed read counts
 e.g., Poisson negative log-likelihood:

$$\mathcal{L}(\theta) = \sum_{\text{node } u} -\log p(X_u) \text{ with } X_u \sim \mathcal{P}(\delta_u) \text{ and } \delta_u \propto l_u \sum_{\text{path } p \ni u} \theta_p$$

Regularization-based approaches try to solve:

 $\min_{\theta \in \mathbb{R}^c_+} \mathcal{L}(\theta) \text{ such that } \theta \text{ is sparse}$

Regularization approach

- Suppose there are c candidate isoforms (c large)
- 2 Let θ the unknown c-dimensional vector of abundance
- Solution Let $\mathcal{L}(\phi)$ quantify whether θ explains the observed read counts

• e.g., Poisson negative log-likelihood:

 $\mathcal{L}(\theta) = \sum_{\text{node } u} -\log p(X_u) \text{ with } X_u \sim \mathcal{P}(\delta_u) \text{ and } \delta_u \propto l_u \sum_{\text{path } p \ni u} heta_p$

Regularization-based approaches try to solve:

 $\min_{\theta \in \mathbb{R}^c_+} \mathcal{L}(\theta) \text{ such that } \theta \text{ is sparse}$

Isoform Deconvolution with the Lasso

Lasso

Estimate θ sparse by solving:

$$\min_{\theta \in \mathbb{R}^{c}_{+}} \mathcal{L}(\theta) + \lambda \|\theta\|_{1} ,$$

with \mathcal{L} a convex loss function.

Computationally challenging:

- \rightarrow IsoLasso: strong filtering
- \rightarrow NSMAP, SLIDE: number of exons cut-off

FlipFlop: Fast Lasso-based Isoform Prediction as a FLOw Problem

- \rightarrow no filtering
- \rightarrow no exon restrictions

Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2014)

θ

The isoform deconvolution problem

$$\min_{\theta \in \mathbb{R}_{+}^{c}} \mathcal{L}(\theta) + \lambda \| \theta \|_{1}$$

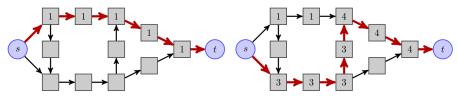
can be solved in polynomial time in the number of exon.

Key ideas

- Reformulation as a convex cost flow problem (Mairal and Yu, 2012)
- 2 Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features in polynomial time"

Combinations of isoforms are flows



(a) Reads at every node corresponding to one isoform.

(b) Reads at every node after adding another isoform.

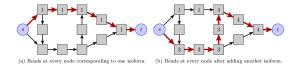
- Linear combinations of isoforms ⇒
- Flow value on every edges

Flow Decomposition (linear time algorithm)

Flow value on every edges Paths with given value/abundance

A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq. RECOMB-2013.

Equivalent flow problem (simpler!)



• $\mathcal{L}(\theta)$ depends only on the values of the flow on the vertices

•
$$\|\theta\|_1 = \sum_{\text{path } p} \theta_p = f_t$$

• Therefore,

$$\min_{\theta \in \mathbb{R}^{c}_{+}} \mathcal{L}(\theta) + \lambda \|\theta\|_{1} \text{ is equivalent to } \min_{\substack{f \text{ flow}}} \tilde{\mathcal{L}}(f) + \lambda f_{t}$$

Isoform Detection=Path Selection Problem

 $\sim 2^n$ variables (all paths in the splicing graph)

↕

Equivalent Network Flow Problem

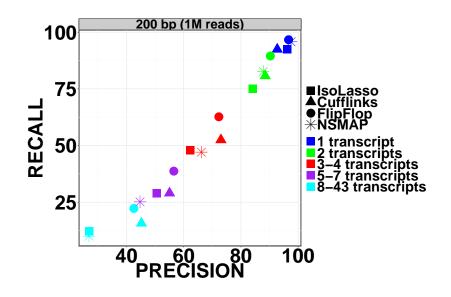
 $\sim rac{n^2}{2}$ variables (all nodes of the splicing graph)

Network Flow Algorithms

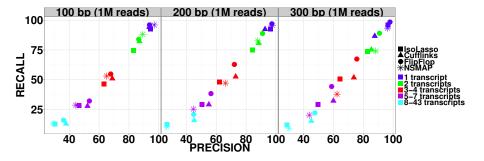
Efficient Algorithms ! Polynomial Time.

Human Simulation: Precision/Recall

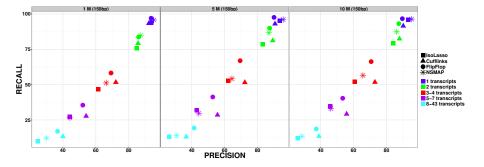
hg19, 1137 genes on chr1, 1million 200 bp single-end reads by transcript levels. Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html



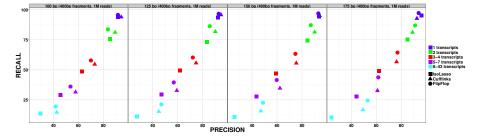
Performance increases with read length



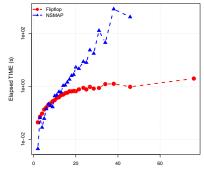
Performance increases with coverage



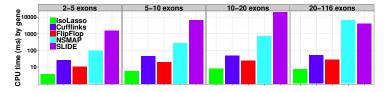
Extension to paired-end reads OK.



Speed trial

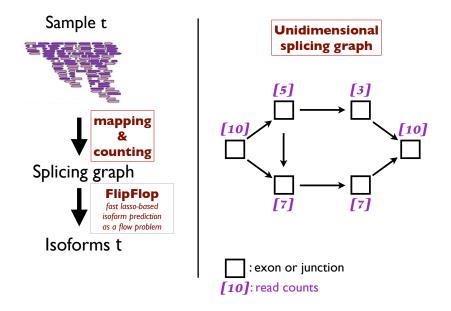


Number of EXONS

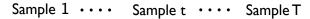


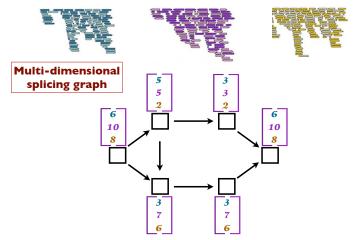
- FlipFlop: Fast method for exact Lasso-based isoform detection and quantification
- http://cbio.mines-paristech.fr/flipflop
- Available as an R package
 - > source("http://bioconductor.org/biocLite.R")
 - > biocLite("flipflop")
 - E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient RNA isoform identification and quantification from RNA-seq data with network flows. Bioinformatics, 30(17):247-55, 2014

Strategy for 1 sample

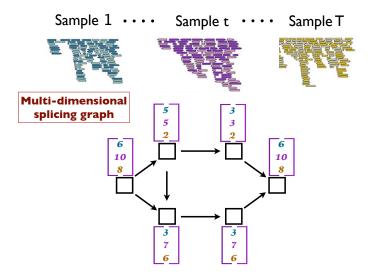


Multi-dimensional case



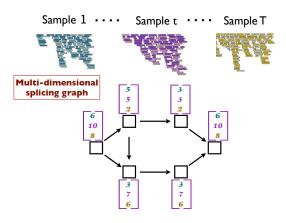


Multi-dimensional case



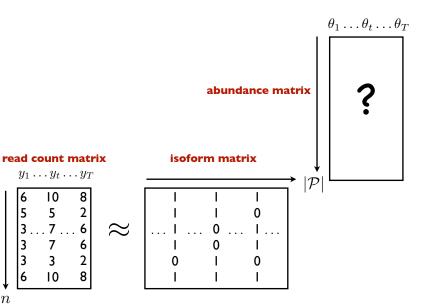
Can we find a sparse set of paths that explains the multi-dimensional read counts?

Notations

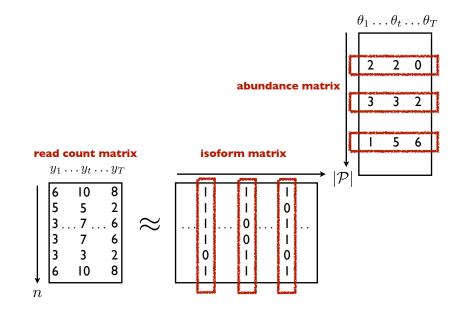


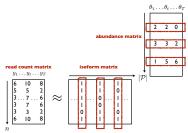
- n nodes, T samples
- \mathcal{P} paths in the splicing graph
- y_t ∈ ℝⁿ₊ vector of counts for sample t
 - $y_1 \ldots y_t \ldots y_T$
- $\theta_t \in \mathbb{R}^{|\mathcal{P}|}_+$ vector of isoform abundances for sample t

 $\theta_1 \dots \theta_t \dots \theta_T$



n



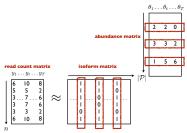


- each isoform defines a group $\theta_{p} = \{\theta_{p}^{t}, t \in \llbracket 1, T \rrbracket\}$
- the multi-samples loss is the sum of the independent losses

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \mathsf{loss}(\boldsymbol{y}_t, \theta_t)$$

Ideally we want to solve the NP-hard L0 problem

$$\min_{\{\boldsymbol{\theta}_{p}\}_{p\in 1,...,|\mathcal{P}|}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{\boldsymbol{p}\in\mathcal{P}} \mathbf{1}_{\{\boldsymbol{\theta}_{p}\neq\mathbf{0}\}}$$



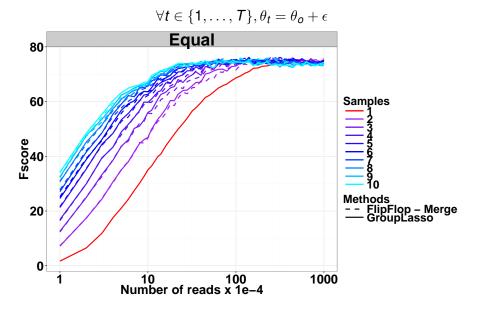
- each isoform defines a group $\theta_p = \{\theta_p^t, t \in \llbracket 1, T \rrbracket\}$
- the multi-samples loss is the sum of the independent losses

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \mathsf{loss}(\boldsymbol{y}_t, \theta_t)$$

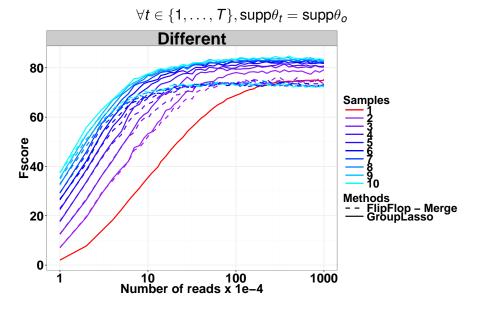
Instead we solve the group-lasso convex relaxation

$$\min_{\{\boldsymbol{\theta}_{p}\}_{p\in 1,...,|\mathcal{P}|}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{\boldsymbol{p}\in\mathcal{P}} \|\boldsymbol{\theta}_{p}\|_{2}$$

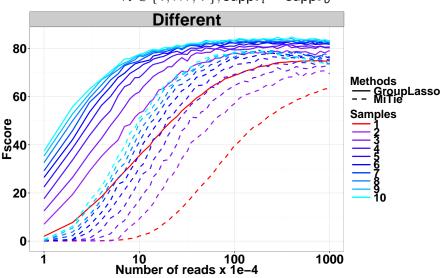
Toy simulation



More realistic simulation

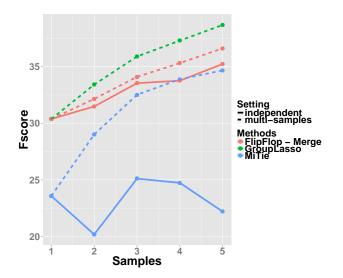


GroupLasso vs State-of-Art



$$\forall t \in \{1, \ldots, T\}, \mathsf{supp}\theta_t = \mathsf{supp}\theta_o$$

modENCODE data Time course development of D.melanogaster



- Extension of FlipFlop to multiple samples (with group Lasso formulation)
- No more flow trick
- http://cbio.mines-paristech.fr/flipflop
- Available as an R package
 - > source("http://bioconductor.org/biocLite.R")
 - > biocLite("flipflop")
 - E. Bernard, L. Jacob, J. Mairal, E. Viara and J.-P. Vert. A convex formulation for joint RNA isoform detection and quantification from multiple RNA-seq samples. Technical report HAL-01123141, March 2015.

Thanks

Inserm Institut national de la santé et de la recherche médicals

BIOMÉRIEUX

SEVENTH FRAMEWORK