Learning in high dimension

Jean-Philippe Vert

The « $n \ll p$ » problem

How to learn with $n \ll p$?

1. Simplify data: pairwise comparisons
2. Add prior knowledge: structured feature selection

How to learn with $n \ll p$?

1. Simplify data: pairwise comparisons

2. Add prior knowledge: structured feature selection

Top Scoring Pairs (TSP)

(a) TSP

$$
\text { IF SPTAN1 => CD33* THEN ALL, ELSE AML. } \quad \Delta=0.9787
$$

(b) k-TSP

IF SPTAN1 => CD33* THEN ALL, ELSE AML.
IF TCF3* > APLP2 THEN ALL, ELSE AML.

$$
\text { IF ATP2A3* }=>\text { CST3* THEN ALL, ELSE AML. }
$$

IF DGKD > MGST1 THEN ALL, ELSE AML.
IF CCND3* => NPC2 THEN ALL, ELSE AML.
IF TOP2B* > PLCB2 THEN ALL, ELSE AML.
IF Macmarcks => CTSD* THEN ALL, ELSE AML.

$$
\begin{aligned}
& \Delta=0.9787 \\
& \Delta=0.9787 \\
& \Delta=0.9574 \\
& \Delta=0.9387 \\
& \Delta=0.9387 \\
& \Delta=0.9387 \\
& \Delta=0.9387 \\
& \Delta=0.9362 \\
& \Delta=0.9200
\end{aligned}
$$

(Geman et al., 2004; Tan et al., 2005; Leek, 2009; ...)

Generalization of TSP

Practical problem

Storing O(p^2) bits per sample

Training a linear model in O(p^2) dimensions

A trick

+kernel trick = we can train linear models efficiently

Experiment

Datasets

Dataset	No. of features	No. of samples (training/test)	
		C_{1}	C_{2}
Breast Cancer 1	23624	$44 / 7$ (Non-relapse)	$32 / 12$ (Relapse)
Breast Cancer 2	22283	142 (Non-relapse)	56 (Relapse)
Breast Cancer 3	22283	71 (Poor Prognosis)	138 (Good Prognosis)
Colon Tumor	2000	40 (Tumor)	22 (Normal)
Lung Cancer 1	7129	24 (Poor Prognosis)	62 (Good Prognosis)
Lung Cancer 2	12533	$16 / 134$ (ADCA)	$16 / 15$ (MPM)
Medulloblastoma	7129	39 (Failure)	21 (Survivor)
Ovarian Cancer	15154	162 (Cancer)	91 (Normal)
Prostate Cancer 1	12600	$50 / 9$ (Normal)	$52 / 25$ (Tumor)
Prostate Cancer 2	12600	13 (Non-relapse)	8 (Relapse)

Methods

- Kernel machines Support Vector Machines (SVM) and Kernel Fisher Discriminant (KFD) with Kendall kernel, linear kernel, Gaussian RBF kernel, polynomial kernel.
- Top Scoring Pairs (TSP) classifiers [Tan et al., 2005].
- Hybrid scheme of SVM + TSP feature selection algorithm.

Results

Summary

- Robust representation as $O\left(p^{\wedge} 2\right)$ bits
- Computationally efficient (Kendall kernel)
- Good accuracy
- Extension to missing values OK
- Extension to « fuzzy comparison » OK
- Open questions:
- robustness across technologies (Patil et al., 2015) ?
- correction for batch / structure?

How to learn with $n \ll p$?

1. Simplify data: pairwise comparisons
2. Add prior knowledge: structured feature selection

Feature Selection

p features

« Molecular signature»

Also relevant for

- isoform identification from RNA-seq data (IsoLasso, FlipFlop etc...)
- gene network inference (GENIE3, TIGRESS, etc...)

Early disappointments...

Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van ’t Veer ${ }^{\star} \dagger$, Hongyue Dai $\dagger \ddagger$, Marc J. van de Vijver ${ }^{\star} \dagger$, Yudong D. He \ddagger, Augustinus A. M. Hart*, Mao Mao \ddagger, Hans L. Peterse ${ }^{\star}$, Karin van der Kooy*, Matthew J. Marton \ddagger, Anke T. Witteveen*, George J. Schreiber \ddagger, Ron M. Kerkhoven ${ }^{\star}$, Chris Roberts \ddagger, Peter S. Linsley \ddagger, René Bernards ${ }^{*}$ \& Stephen H. Friend \ddagger

70 genes (Nature, 2002)

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

Not because of feature selection method

(Haury et al., 2011)

What's wrong?

Increasing n helps

Can we try to « decrease p »?
Add prior knowledge,
Structured feature selection

Sparsity with the LASSO

- Linear model
$f(x)=w 1 x 1+w 2 x 2+\ldots+w P x P$
- Sparse when wK=0 for many K's
- Learn a sparse model by minimize Error(w)
such that
w is in the grey box 0
- O is convex -> efficient algorith
- O has edges -> sparsity

Structured sparsity with atomic norms

1) Choose a set of ATOMS
(Chandrasekaran et al., 2012, ...)

Structured sparsity with atomic norms

1) Choose a set of ATOMS
2) Take the convex hull O

(Chandrasekaran et al., 2012, ...)

Structured sparsity with atomic norms

1) Choose a set of ATOMS
2) Take the convex hull
3) Minimize Error(w) such that w is in the convex hull

The solution is a sparse model over the ATOMS!
(Chandrasekaran et al., 2012, ...)

Quizz: where are the atoms?

$\|w\|_{2}$
Ridge
$\|w\|_{1}$
Lasso
$\sqrt{w_{1}^{2}+w_{2}^{2}}+\left|w_{3}\right|$
Group Lasso

Trace norm

Graph Lasso

To select features that tend to be connected over a given network
(Jacob et al., 2009)

Breast cancer prognosis signature with Lasso (accuracy=61\%)

Breast cancer prognosis signature with Graph Lasso (accuracy=64\%)

Joint isoform detection from multiple RNA-Seq samples

Elsa Bernard

Laurent Jacob

Julien Mairal

Eric Viara

Learning sparse models with disjoint support?

Motivation

- Multiclass or multi-task classification problems
- Eg: cascade of classifiers

An atomic norm

(Vervier et al., 2014)

Application: Microbial identification from MALDI-TOF MS spectra

Learning low-rank matrices with sparse factors?

An atomic norm

An atomic norm

$$
X=\sum_{i=1}^{r} u_{i} v_{i}^{\top}
$$

Theorem
Learning with this norm is «statistically optimal» to infer sparse low-rank matrices

But
Convex but NP-hard

E. Richard

(Richard et al., 2014)

Preliminary results on sparse PCA

Sample covariance	Trace	ℓ_{1}	Trace $+\ell_{1}$	Sequential	$\Omega_{k, \succeq}$
4.20 ± 0.02	0.98 ± 0.01	2.07 ± 0.01	0.96 ± 0.01	0.93 ± 0.08	$\mathbf{0 . 5 9} \pm \mathbf{0 . 0 3}$

(Richard et al., 2014)

Summary

- Include prior knowledge: « sparse on some dictionary »
- Convex, (usually) computationally efficient
- Leads to interpretable model
- Good framework for data integration

Thanks

Future

- Find representations simple (for statistical reasons), robust to artefacts (batch, technology, ...)
- $\mathrm{n} \ll \mathrm{p}$ still far from solved

