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Biology in numbers

1 body = 1014 human cells (and 100x more non-human cells)
1 cell = 6× 109 ACGT coding for 20,000+ genes



Cancer

http://rise.duke.edu/seek/pages/page.html?0205

http://rise.duke.edu/seek/pages/page.html?0205


A cancer cell (1900)



A cancer cell (1960)



A cancer cell (2010)



All cancers are different

All happy families are alike; each unhappy family is unhappy in its own
way.
- Leon Tolstoy, Anna Karenina.



Opportunities

What is your risk of developing a cancer? (prevention)
Once detected, what precisely is your cancer? (diagnosis)
After treatment, are you cured? (prognosis)
What is the best way to treat your cancer? (precision medicine)



Example: precision medicine



Supervised classification

Each point is a patient
Color is the response: good (black) vs bad (white) responder
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Example: logistic regression (Berkson, 1944)

Given a training set: D = {(x1, y1), . . . , (xn, yn)} where
xi ∈ Rp (sample)
yi ∈ {−1,1} (label)

Fit a linear model
fβ(x) = β>x

by solving:

min
β∈Rp

R(β) :=
n∑

i=1

ln
(

1 + e−yi fβ(xi )
)



Challenge: n << p

n = 102 ∼ 104 (patients)
p = 104 ∼ 107 (genes, mutations, copy number, ...)

Consequences:
Problem ill-posed
Overfitting
Prediction accuracy drops
Features selection unstable



Feature selection

Filter methods
Wrapper methods
Embedded methods



Example: `1 regularization

min
β∈Rp

R(β) such that
p∑

i=1

|βi | ≤ C

Leads to sparse models (feature selection)



`1 regularization works well in theory
4
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Fig. 1. (a) Plots of the success probability P[S±(bβ) = S±(β∗)] of obtaining the correct signed support versus the sample size n
for three different problem sizes p, in all cases with sparsity k = ⌈0.40p0.75⌉. (b) Same simulation results with success probability
plotted versus the rescaled sample size θ(n, p, k) = n/[2k log(p − k)]. As predicted by Theorems 3 and 4, all the curves now lie
on top of one another. See Section VII for further simulation results.

II. BACKGROUND AND PRIMAL-DUAL WITNESS
CONSTRUCTION

In this section, we begin by developing the convex-analytic
conditions that characterize the optima of the ℓ1-regularized
quadratic program (3). We then specify the construction that
underlies the proofs of our main results, and prove some
elementary lemmas that show how it characterizes the success
(or failure) of the Lasso in recovering the correct support set.
We refer to this method as a primal-dual witness, since it
is based on an explicit construction of a pair of vectors that
(when the procedure succeeds) are a primal and dual optimal
solutions for the Lasso, and act as a witnesses for the correct
recovery of the support.

A. Convex optimality and uniqueness

We begin with some basic observations about the Lasso
problem (3). First, the minimum in the Lasso is always
achieved by at least one vector β ∈ Rp. This fact follows
from the Weierstrass theorem, because in its ℓ1-constrained
form (4), the minimization is over a compact set, and the
objective function is continuous. Second, although the problem
is always convex, it is not always strictly convex, so that the
optimum can fail to be unique. Indeed, a little calculation
shows that the Hessian of the quadratic component of the
objective is the p × p matrix XT X/n, which is positive
definite but not strictly so whenever p > n. Nonetheless, as
stated below in Lemma 1, strict dual feasibility conditions are
sufficient to ensure uniqueness, even under high-dimensional
scaling (p ≫ n).
The objective function is not always differentiable, since the

ℓ1-norm is a piecewise linear function. However, the optima
of the Lasso (3) can be characterized by a zero subgradient
condition. A vector z ∈ Rp is a subgradient for the ℓ1-norm
evaluated at β ∈ Rp, written as z ∈ ∂∥β∥1, if its elements

satisfy the relations

zi = sign(βi) if βi ̸= 0, and zi ∈ [−1, +1], otherwise. (7)

For any subset A ⊆ {1, 2, . . . , p}, let XA be the n × |A|
matrix formed by concatenating the columns {Xi, i ∈ A}
indexed by A. For any vector β ∈ Rp, we define its support
set S(β) = {i | βi ̸= 0}. With these definitions, we state the
following:

Lemma 1. (a) A vector β̂ ∈ Rp is optimal if and only if
there exists a subgradient vector ẑ ∈ ∂∥β̂∥1 such that

1

n
XT X(β̂ − β∗) − 1

n
XT w + λnẑ = 0. (8)

(b) Suppose that the subgradient vector satisfies the strict
dual feasibility condition |ẑj | < 1 for all j /∈ S(β̂). Then
any optimal solution β̃ to the Lasso satisfies β̃j = 0 for
all j /∈ S(β̂).

(c) Under the conditions of part (b), if the k × k matrix
XT

S(bβ)
XS(bβ) is invertible, then β̂ is the unique optimal

solution of the Lasso program.

The proof is provided in Appendix B.

B. Primal-dual witness construction

We now turn to the proof technique that underlies our main
results. Using S as a shorthand for the support set S(β∗)
of the true vector β∗, we assume throughout that the k × k
matrix XT

S XS is invertible. Under this condition, the primal-
dual witness (PDW) method consists of constructing a pair
(β̌, ž) ∈ Rp × Rp according to the following steps:
1) First, we obtain β̌S ∈ Rk by solving the restricted Lasso
problem,

β̌S = arg min
βS∈Rk

{ 1

2n
∥y − XSβS∥2

2 + λn∥βS∥1

}
. (9)

n ∼ s ln(p − s), see e.g. Wainwright (2009) and many more
If features are not "too correlated"



Example: 70-gene breast cancer prognostic signature

van ’t Veer et al. (2002);
van de Vijver et al. (2002)



But...

70	genes	(Nature,	2002)	 76	genes	(Lancet,	2005)	

3	genes	in	common	

van ’t Veer et al. (2002); Wang et al. (2005)



No feature selection method seems to work well
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Introduction

Biomarker discovery from high-dimensional data, such as
transcriptomic or SNP profiles, is a crucial problem with
enormous applications in biology and medicine, such as diagnosis,
prognosis, patient stratification in clinical trials or prediction of the
response to a given treatment. Numerous studies have for example
investigated so-called molecular signatures, i.e., predictive models
based on the expression of a small number of genes, for the
stratification of early breast cancer patients into low-risk or high-
risk of relapse, in order to guide the need for adjuvant therapy [1].

While predictive models could be based on the expression of
more than a few tens of genes, several reasons motivate the search
for short lists of predictive genes. First, from a statistical and
machine learning perspective, restricting the number of variables
is often a way to reduce over-fitting when we learn in high
dimension from few samples and can thus lead to better
predictions on new samples. Second, from a biological viewpoint,
inspecting the genes selected in the signature may shed light on
biological processes involved in the disease and suggest novel
targets. Third, and to a lesser extent, a small list of predictive genes
allows the design of cheap dedicated prognostic chips.

Published signatures share, however, very few genes in
common, raising questions about their biological significance
[2]. Independently of differences in cohorts or technologies, [3]
and [4] demonstrate that a major cause for the lack of overlap
between signatures is that many different signatures lead to
similar predictive accuracies, and that the process of estimating
a signature is very sensitive to the samples used in the phase of
gene selection. Specifically [5], suggest that many more samples
than currently available would be required to reach a descent

level of signature stability, meaning in particular that no
biological insight should be expected from the analysis of
current signatures. On the positive side, some authors noticed
that the biological functions captured by different signatures are
similar, in spite of the little overlap between them at the gene
level [6–8].

From a machine learning point of view, estimating a signature
from a set of expression data is a problem of feature selection, an
active field of research in particular in the high-dimensional setting
[9]. While the limits of some basic methods for feature selection
have been highlighted in the context of molecular signatures, such
as gene selection by Pearson correlation with the output [5], there
are surprisingly very few and only partial investigations that focus
on the influence of the feature selection method on the performance and
stability of the signature [10]. compared various feature selection
methods in terms of predictive performance only, and [11] suggest
that ensemble feature selection improves both stability and
accuracy of SVM recursive feature elimination (RFE), without
comparing it with other methods. However, it remains largely
unclear how ‘‘modern’’ feature selection methods such as the
elastic net [12], SVM RFE or stability selection [13] behave in
these regards and how they compare to more basic univariate
techniques.

Here we propose an empirical comparison of a panel of feature
selection techniques in terms of accuracy and stability, both at the
gene and at the functional level. Using four breast cancer datasets,
we observe significant differences between the methods. Surpris-
ingly, we find that ensemble feature selection, i.e., combining
multiple signatures estimated on random subsamples, has
generally no positive impact, and that simple filters can
outperform more complex wrapper or embedded methods.
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Adding prior knowledge
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Genes (=features) are known to interact with each other
Predictive features are likely to interact
Can we "bias" the set of selected features towards sets of
interacting genes?



Atomic Norm (Chandrasekaran et al., 2012)

Definition
Given a set of atoms A, the associated atomic norm is

‖x‖A = inf{t > 0 | x ∈ t conv(A)}.
A should be centrally symmetric and span Rp



Atomic Norm (Chandrasekaran et al., 2012)

Definition
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Equivalent formulations

‖x‖A = inf{t > 0 | x ∈ t conv(A)}

‖x‖A = inf

{∑

a∈A
ca | x =

∑

a∈A
ca a, ca > 0, ∀a ∈ A

}

‖x‖∗A = sup
a∈A
〈a, x〉



Examples

Vector `1-norm: x ∈ Rp 7→ ‖x‖1

A =
{
± ek | 1 ≤ k ≤ p

}

Matrix trace norm: Z ∈ Rm1×m2 7→ ‖Z‖∗ (sum of singular value)

A =
{

ab> : a ∈ Rm1 ,b ∈ Rm2 , ‖a ‖2 = ‖b ‖2 = 1
}



Learning with an Atomic Norm

min
β

R(β) such that ‖β‖A ≤ C

Property: the solution β∗ is a sparse combination of atoms
More precisely, how "easy" is it to learn such a β∗?



Statistical dimension (Amelunxen et al., 2013)

•

•

•

Z?

Y = Z? + ε

Ẑ

Z? + TΩ(Z?)

{Ω(·) ≤ 1}

www.cmap.polytechnique.fr/ giraud/MSV/LectureNotes.pdf

2

figure inspired by Amelunxen et al. (2013)

S(Z ,Ω) :=E
[∥∥ΠTΩ(Z )(G)

∥∥2
Fro

]
,



Nullspace property and S (Chandrasekaran et al., 2012)
PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 7

x0 +null(A)

{x : f (x) ≤ f (x0)}

x0

x0 +D( f , x0)

x0 +null(A)

{x : f (x) ≤ f (x0)}

x0

x0 +D( f , x0)

FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone D( f , x0) and the null space null(A) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.

The function f is called a regularizer, and the formulation (2.4) is called a regularized linear inverse problem.
To illustrate the kinds of regularizers that arise in practice, we highlight two familiar examples.

Example 2.5 (Sparse vectors). When the vector x0 is known to be sparse, we can minimize the `1 norm to
look for a sparse solution to the inverse problem. Repeating (1.2), we have the optimization

minimize ‖x‖1 subject to z0 = Ax . (2.5)

This approach was proposed by Chen et al. [CDS01], motivated by work in geophysics [CM73, SS86].

Example 2.6 (Low-rank matrices). Suppose that X0 is a low-rank matrix, and we have acquired a vector of
measurements of the form z0 =A (X0), where A is a linear operator. This process is equivalent with (2.3).
We can look for low-rank solutions to the linear inverse problem by minimizing the Schatten 1-norm:

minimize ‖X ‖S1 subject to z0 =A (X ). (2.6)

This method was proposed in [RFP10], based on ideas from control [MP97] and optimization [Faz02].

We say that the regularized linear inverse problem (2.4) succeeds at solving (2.3) when the convex program
has a unique minimizer x̂ that coincides with the true unknown; that is, x̂ = x0. To develop conditions for
success, we introduce a convex cone associated with the regularizer f and the unknown x0.

Definition 2.7 (Descent cone). The descent cone D( f , x) of a proper convex function f : Rd → R at a point
x ∈Rd is the conic hull of the perturbations that do not increase f near x.

D( f , x) :=
⋃
τ>0

{
y ∈Rd : f (x +τy) ≤ f (x)

}
.

The descent cones of a proper convex function are always convex, but they may not be closed. The descent
cones of a smooth convex function are always halfspaces, so this concept inspires the most interest when the
function is nonsmooth.

To characterize when the optimization problem (2.4) succeeds, we write the primal optimality condition in
terms of the descent cone; cf. [RV08, Sec. 4] and [CRPW12, Prop. 2.1].

Fact 2.8 (Optimality condition for linear inverse problems). Let f be a proper convex function. The vector x0 is
the unique optimal point of the convex program (2.4) if and only if D( f , x0)∩null(A) = {0}.

Figure 2.3 illustrates the geometry of this optimality condition. Despite its simplicity, this result forges a
crucial link between the convex optimization problem (2.4) and the theory of conic integral geometry.

Figure from Amelunxen et al. (2013)

With X : Rp → Rn random Gaussian matrix,

β̂ = argmin
β

Ω(β) such that Xβ = y

is equal to β? w.h.p. as soon as n ≥ S(β?,Ω).
Similar results with noisy outputs etc..



Statistical dimensions of a few standard norms

Matrix norm S Vector norm S

`1 Θ(kq log m1m2
kq ) `1 Θ(k log p

k )

trace-norm Θ(m1 + m2) `2 p

`1 + trace Ω
(
kq ∧ (m1 + m2)

)
elastic net Θ(k log p

k )

(k ,q)-trace O((k ∨ q) log (m1 ∨m2)) k -support Θ(k log p
k )

Lower bound for `1+ trace norm based on a result of Oymak et al. (2012)
f = Θ(g) means (f = O(g)&g = O(f ))

f = Ω(g) means g = O(f )

See Richard et al. (2014)



Making atomic norms

http://www.homemade-gifts-made-easy.com/make-paper-lanterns.html

Choose atoms and make a chinese lantern
Enforce statistical dimensions to solutions you expect
Think of algorithms for constrained convex optimization

http://www.homemade-gifts-made-easy.com/make-paper-lanterns.html


Graph lasso (Jacob et al., 2009)

Ω(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β



Application: breast cancer survival prediction

n = 295 breast cancers, 78 metastatic vs 217 non-metastatic
p = 8,141 gene expression measures (van de Vijver et al., 2002)

Gene network compiled by Chuang et al. (2007)
57,235 interactions among 11,203 proteins



Lasso signature (accuracy 0.61)

Jacob et al. (2009)



Graph Lasso signature (accuracy 0.64)

Jacob et al. (2009)



Conclusion

Many new exciting problems and lots of data in computational
genomics and precision medicine
Machine learning tempting but sometimes challenging (n << p)
Very active field of research at the interface of math / CS / biology



Thanks

Point&d’étape&ITI&/&20&FEVRIER&–&1er&JUILLET&2014&!
C.SURIAM!–!F.LEQUEUX!
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1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!
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