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Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful and relatively young technique that enables

researchers to measure gene expression at the resolution of single cells. Because of the tiny amount of
RNA present in a single cell, many genes fail to be detected even though they are expressed; these genes
are usually referred to as dropouts. Here, we present a general and flexible zero-inflated negative binomial
(ZINB) model which leads to low-dimensional representations of the data that account for zero inflation
(dropouts), over-dispersion, and the count nature of the data. We demonstrate, with simulations and
real data, that the model is able to give a more stable low-dimensional representations of the data than
PCA and ZIFA without the need for a preliminary normalization step.

Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful and relatively young technique enabling the charac-
terization of the molecular states of individual cells through their transcriptional profiles [1–7]. It represents
a major advance with respect to standard “bulk” RNA sequencing, which is only capable of measuring gene
expression levels averaged over millions of cells. Such averaged gene expression profiles may be enough to
characterize the global state of a tissue, but completely mask signal coming from individual cells, ignoring
tissue heterogeneity. Assessing cell-to-cell variability in expression is crucial for disentangling complex het-
erogeneous tissues [8–10] and for understanding dynamic biological processes, such as embryo development
[11] and cancer [12]. Despite the early successes of scRNA-seq, in order to fully exploit the potential of this
new technology, it is essential to develop statistical and computational methods specifically designed for the
unique challenges of this type of data [1].

Because of the tiny amount of RNA present in a single cell, the input material needs to go through
many rounds of amplification before being sequenced. This results in strong amplification bias, as well as
dropouts, i.e., genes that fail to be detected even though they are expressed in the sample [13]. The inclusion
in the library preparation of unique molecular identifiers (UMIs) reduces amplification bias [14], but does
not remove dropout events, nor the need for data normalization [15, 16]. In addition to the host of unwanted
technical e�ects that a�ect bulk RNA-seq, scRNA-seq data exhibit much higher variability between technical
replicates, even for genes with medium or high levels of expression [17].
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Single-cell	RNA-seq	

(Grün	et	al	2015)	



The	data	



Dropout,	overdispersion…	

Kharchenko	et	al.,	2014	



Challenges	

•  Normalize	for	sequencing	depth?	
•  Remove	unwanted	varia=ons?	(batches,	cell	
cycle,	GC	content,	…)	

•  Distances	between	transcrip=on	profiles?	
•  Clustering	/	Visualiza=on?	
•  Differen=al	expression?	



Standard	approach	

•  Massage	the	matrix	
– Y_ij	=	log(count_ij	+	1)	*	size	factor	
– Some=mes	full	quan=le	normaliza=on	

•  Dimension	reduc=on	
– PCA	on	Y	
– Keep	around	50	dimensions	

•  Nonlinear	embedding	(t-SNE),	clustering,	…	



Dimension	reduc=on	(PCA/SVD)	

E[Y ] = W↵

1

PCA). The matrix V can also accommodate an intercept to account for cell-specific global e�ects, such as size
factors representing di�erences in library sizes (cf. sequencing depth). In addition, V can include gene-level
covariates, such as gene length or GC-content (Fig. 1).
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Figure 1: Schematic view of the ZINB model. Given n cells and J genes, let Yij denote the count of gene
j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, *** SD: µij = E[Yij |Zij = 0, X, V, W ] and fiij = Pr(Zij =
1|X, V, W ). We model log µ and logitfi with the regression specified in the figure. Note that the model allows
for di�erent covariates to be specified in the two regressions; we have omitted the µ and fi indices for clarity
in the figure (see the Methods for details). *** SD: In figure: I would use the same terminology for both X
and V intercepts: "X intercept acts as gene-specific scaling factor" and "V intercept acts as sample-specific
scaling factor" or use "normalization factor" for both X and V . Replace "unknown factors of interest" by
"unknown sample-level covariates", as W can also include unwanted factors. Use consistent capitalization.

The unobserved matrix W contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [32, 33] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [32] and
log-linear regression [33]). It di�ers in interpretation from RUV in the W– term which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical e�ects (as in RUV), such as batch e�ects, or to biological e�ects of interest, such as cell
cycle or cell di�erentiation.

It is important to note that although W is the same, the matrices X and V could di�er in the modeling
of µ and fi, if we assume that some known factors do not a�ect both. When X = 1n and V = 1J , the model
is a factor model akin to principal component analysis (PCA), where W is a factor matrix and –µ and –fi

are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Simulated Datasets: ZINB Estimators are Asymptotically Unbiased and Robust

First, we evaluated the ZINB estimation procedure on simulated data from a zero-inflated negative binomial
distribution, to assess both accuracy under a correctly specified model and robustness to model misspecifi-
cation. The approach involves computing maximum likelihood estimators (MLE) for the parameters of the
ZINB model of Fig. 1, namely, –, —, “, and W , and hence µ and fi. MLE are well-behaved, in that they are
asymptotically unbiased and e�cient. However, because the likelihood function of our ZINB model is not
convex, our numerical optimization procedure may converge to a local maximum, rather than to the true
MLE (see Methods).

On simulated data, we observed that our estimators are asymptotically unbiased (Fig. S1) and have
decreasing variance as the number of cells n increases (Fig. S1 and S2). This suggests that our estimates are
not far from the true MLE.
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Including	known	covariates	(RUV)	
E[Y ] = W↵

E[Y ] = X� +W↵

E[Y ] = X� + V � +W↵

1
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j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, *** SD: µij = E[Yij |Zij = 0, X, V, W ] and fiij = Pr(Zij =
1|X, V, W ). We model log µ and logitfi with the regression specified in the figure. Note that the model allows
for di�erent covariates to be specified in the two regressions; we have omitted the µ and fi indices for clarity
in the figure (see the Methods for details). *** SD: In figure: I would use the same terminology for both X
and V intercepts: "X intercept acts as gene-specific scaling factor" and "V intercept acts as sample-specific
scaling factor" or use "normalization factor" for both X and V . Replace "unknown factors of interest" by
"unknown sample-level covariates", as W can also include unwanted factors. Use consistent capitalization.

The unobserved matrix W contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [32, 33] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [32] and
log-linear regression [33]). It di�ers in interpretation from RUV in the W– term which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical e�ects (as in RUV), such as batch e�ects, or to biological e�ects of interest, such as cell
cycle or cell di�erentiation.

It is important to note that although W is the same, the matrices X and V could di�er in the modeling
of µ and fi, if we assume that some known factors do not a�ect both. When X = 1n and V = 1J , the model
is a factor model akin to principal component analysis (PCA), where W is a factor matrix and –µ and –fi

are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Simulated Datasets: ZINB Estimators are Asymptotically Unbiased and Robust

First, we evaluated the ZINB estimation procedure on simulated data from a zero-inflated negative binomial
distribution, to assess both accuracy under a correctly specified model and robustness to model misspecifi-
cation. The approach involves computing maximum likelihood estimators (MLE) for the parameters of the
ZINB model of Fig. 1, namely, –, —, “, and W , and hence µ and fi. MLE are well-behaved, in that they are
asymptotically unbiased and e�cient. However, because the likelihood function of our ZINB model is not
convex, our numerical optimization procedure may converge to a local maximum, rather than to the true
MLE (see Methods).

On simulated data, we observed that our estimators are asymptotically unbiased (Fig. S1) and have
decreasing variance as the number of cells n increases (Fig. S1 and S2). This suggests that our estimates are
not far from the true MLE.
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How	to	adapt	PCA/SVD/RUV	
to	scRNA-seq	data?	
E[Y ] = W↵

E[Y ] = X� +W↵

E[Y ] = X� + V � +W↵

1

-  discrete,	non-Gaussian	data	
-  dropouts	



Some	
worrying	
results	

 

 
Figure 3: Illustration with public data10 of how batch effects lead to differences in detection 

rates, which lead to apparent differences between biological groups. (A) Using principal 

components analysis, scRNA-Seq samples cluster by biological group, but the observed 

biological variation across groups is confounded with (B) technical variation from processing the 

cells in different batches. (C) Within one group (Group 5), the cells cluster by batch. (D) 

Furthermore, individual batches of cells have different proportions of detected genes, which may 

be driving the observed biological variation across groups. 
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ZIFA: Dimensionality reduction for
zero-inflated single-cell gene expression
analysis
Emma Pierson1 and Christopher Yau1,2*

Abstract
Single-cell RNA-seq data allows insight into normal cellular function and various disease states through molecular
characterization of gene expression on the single cell level. Dimensionality reduction of such high-dimensional data
sets is essential for visualization and analysis, but single-cell RNA-seq data are challenging for classical dimensionality-
reduction methods because of the prevalence of dropout events, which lead to zero-inflated data. Here, we develop a
dimensionality-reduction method, (Z)ero (I)nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout
characteristics, and show that it improves modeling accuracy on simulated and biological data sets.

Introduction
Single-cell RNA expression analysis (scRNA-seq) is rev-
olutionizing whole-organism science [1, 2] allowing the
unbiased identification of previously uncharacterized
molecular heterogeneity at the cellular level. Statistical
analysis of single-cell gene expression profiles can high-
light putative cellular subtypes, delineating subgroups of T
cells [3], lung cells [4] and myoblasts [5]. These subgroups
can be clinically relevant: for example, individual brain
tumors contain cells from multiple types of brain cancers,
and greater tumor heterogeneity is associated with worse
prognosis [6].
Despite the success of early single-cell studies, the sta-

tistical tools that have been applied to date are largely
generic, rarely taking into account the particular struc-
tural features of single-cell expression data. In particular,
single-cell gene expression data contain an abundance
of dropout events that lead to zero expression measure-
ments. These dropout events may be the result of tech-
nical sampling effects (due to low transcript numbers)
or real biology arising from stochastic transcriptional
activity (Fig. 1a). Previous work has been undertaken
to account for dropouts in univariate analysis, such as

*Correspondence: cyau@well.ox.ac.uk
1Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG,
Oxford, UK
2Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt
Drive, OX3 7BN, Oxford, UK

differential expression analysis, using mixture model-
ing [7, 8]. However, approaches for multivariate prob-
lems, including dimensionality reduction, have not yet
been considered. As a consequence, it has not been
possible to ascertain fully the ramifications of applying
dimensionality-reduction techniques, such as principal
components analysis (PCA), to zero-inflated data.
Dimensionality reduction is a universal data-processing

step in high-dimensional gene expression analysis. It
involves projecting data points from the very high-
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PCA). The matrix V can also accommodate an intercept to account for cell-specific global e�ects, such as size
factors representing di�erences in library sizes (cf. sequencing depth). In addition, V can include gene-level
covariates, such as gene length or GC-content (Fig. 1).
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Figure 1: Schematic view of the ZINB model. Given n cells and J genes, let Yij denote the count of gene
j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, *** SD: µij = E[Yij |Zij = 0, X, V, W ] and fiij = Pr(Zij =
1|X, V, W ). We model log µ and logitfi with the regression specified in the figure. Note that the model allows
for di�erent covariates to be specified in the two regressions; we have omitted the µ and fi indices for clarity
in the figure (see the Methods for details). *** SD: In figure: I would use the same terminology for both X
and V intercepts: "X intercept acts as gene-specific scaling factor" and "V intercept acts as sample-specific
scaling factor" or use "normalization factor" for both X and V . Replace "unknown factors of interest" by
"unknown sample-level covariates", as W can also include unwanted factors. Use consistent capitalization.

The unobserved matrix W contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [32, 33] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [32] and
log-linear regression [33]). It di�ers in interpretation from RUV in the W– term which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical e�ects (as in RUV), such as batch e�ects, or to biological e�ects of interest, such as cell
cycle or cell di�erentiation.

It is important to note that although W is the same, the matrices X and V could di�er in the modeling
of µ and fi, if we assume that some known factors do not a�ect both. When X = 1n and V = 1J , the model
is a factor model akin to principal component analysis (PCA), where W is a factor matrix and –µ and –fi

are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Simulated Datasets: ZINB Estimators are Asymptotically Unbiased and Robust

First, we evaluated the ZINB estimation procedure on simulated data from a zero-inflated negative binomial
distribution, to assess both accuracy under a correctly specified model and robustness to model misspecifi-
cation. The approach involves computing maximum likelihood estimators (MLE) for the parameters of the
ZINB model of Fig. 1, namely, –, —, “, and W , and hence µ and fi. MLE are well-behaved, in that they are
asymptotically unbiased and e�cient. However, because the likelihood function of our ZINB model is not
convex, our numerical optimization procedure may converge to a local maximum, rather than to the true
MLE (see Methods).

On simulated data, we observed that our estimators are asymptotically unbiased (Fig. S1) and have
decreasing variance as the number of cells n increases (Fig. S1 and S2). This suggests that our estimates are
not far from the true MLE.
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Usage	

•  X:	
–  (1,…,1)	for	gene-specific	offset	
– Batch	effects,	quality	control	
– Experimental	design	

•  V	
–  (1,…,1)	for	cell-specific	offset	(size	factor)	
– GC	content,	...	

•  W,alpha:	cell	cycle,	clusters,	...	(like	PCA)	



Fifng	the	model	

ZINB-WaVE estimation procedure

The input to the model are the matrices X, V , Oµ, and Ofi and the integer K; the parameters to be inferred
are — = (—µ, —fi), “ = (“µ, “fi), W , – = (–µ, –fi), and ’. Given an n◊J matrix of counts Y , the log-likelihood
function is

¸(—, “, W, –, ’) =
nÿ

i=1

Jÿ

j=1
ln fZINB(Yij ; µij , ◊ij , fiij) ,

where µij , ◊ij , and fiij depend on (—, “, W, –, ’) through Equations (4)–(6).
To infer the parameters, we follow a penalized maximum likelihood approach, by trying to solve

max
—,“,W,–,’

{¸(—, “, W, –, ’) ≠ Pen(—, “, W, –, ’)} ,

where Pen(·) is a regularization term to reduce overfitting and improve the numerical stability of the optimiza-
tion problem in the setting of many parameters. For nonnegative regularization parameters (‘— , ‘“ , ‘W , ‘–, ‘’),
we set

Pen(—, “, W, –, ’) = ‘—

2 Î—0Î2 + ‘“

2 Î“0Î2 + ‘W

2 ÎWÎ2 + ‘–

2 Î–Î2 + ‘’

2 Var(’) ,

where —0 and “0 denote the matrices — and “ without the rows corresponding to the intercepts if an unpe-
nalized intercept is included in the model, Î · Î is the Frobenius matrix norm (ÎAÎ =


tr(AúA), where Aú

denotes the conjugate transpose of A), and Var(’) = 1/(J ≠ 1)
qJ

i=1

1
’i ≠ (

qJ
j=1 ’j)/J

22
is the variance of

the elements of ’ (using the unbiased sample variance statistic). The penalty tends to shrink the estimated
parameters to 0, except for the cell and gene-specific intercepts which are not penalized and the dispersion
parameters which are not shrunk towards 0 but instead towards a constant value across genes. Note also
that the likelihood only depends on W and – through their product R = W– and that the penalty ensures
that at the optimum W and – have the structure described in the following result which generalizes standard
results such as [36] (Lemma 1) and [37] (Lemma 6).
Lemma 1. For any matrix R and positive scalars s and t, the following holds:

min
S,T : R=ST

1
2

!
sÎSÎ2 + tÎTÎ2"

=
Ô

stÎRÎú ,

where ÎAÎú = tr

1Ô
AúA

2
. If R = RLR�RR is a singular value decomposition (SVD) of R, then a solution

to this optimization problem is:
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Proof. Let S̃ =
Ô

sS, T̃ =
Ô

tT , and R̃ =
Ô

stR. Then, ÎS̃Î2 = sÎSÎ2, ÎT̃Î2 = tÎTÎ2, and S̃T̃ =
Ô

stST , so
that the optimization problem is equivalent to:

min
S̃,T̃ : S̃T̃ =R̃

1
2

!
ÎS̃Î2 + ÎT̃Î2"

,

which by [37] (Lemma 6) has optimum value ÎR̃Îú =
Ô

stÎRÎú reached at S̃ = R̃LR̃
1
2
� and T̃ = R̃

1
2
�R̃R, where

R̃LR̃�R̃R is a SVD of R̃. Observing that R̃L = RL, R̃R = RR, and R̃� =
Ô

stR�, gives that a solution of
the optimization problem is S = s≠1/2S̃ = s≠1/2RL(st)1/4R1/2

� = (t/s)1/4RLR1/2
� . A similar argument for T

concludes the proof.

This lemma implies in particular that at any local maximum of the penalized log-likelihood, W and –€

have orthogonal columns, which is useful for visualization or interpretation of latent factors.
To balance the penalties applied to the di�erent matrices in spite of their di�erent sizes, a natural choice

is to fix ‘ > 0 and set
‘— = ‘

J
, ‘“ = ‘

n
, ‘W = ‘

n
, ‘– = ‘

J
, ‘’ = ‘ .

In particular, from Lemma 1, we easily deduce the following characterization of the penalty on W and –,
which shows that the entries in the matrices W and – have similar standard deviation after optimization:
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that the likelihood only depends on W and – through their product R = W– and that the penalty ensures
that at the optimum W and – have the structure described in the following result which generalizes standard
results such as [36] (Lemma 1) and [37] (Lemma 6).
Lemma 1. For any matrix R and positive scalars s and t, the following holds:
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concludes the proof.

This lemma implies in particular that at any local maximum of the penalized log-likelihood, W and –€

have orthogonal columns, which is useful for visualization or interpretation of latent factors.
To balance the penalties applied to the di�erent matrices in spite of their di�erent sizes, a natural choice

is to fix ‘ > 0 and set
‘— = ‘

J
, ‘“ = ‘

n
, ‘W = ‘

n
, ‘– = ‘

J
, ‘’ = ‘ .

In particular, from Lemma 1, we easily deduce the following characterization of the penalty on W and –,
which shows that the entries in the matrices W and – have similar standard deviation after optimization:
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Fifng	the	model	

ZINB-WaVE estimation procedure
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•  Ini=aliza=on	
– Uncouple	mu	and	pi	

•  Iterate	un=l	convergence	op=miza=on	of:	
– Dispersion	(zeta)	
– Leh	factors	(gamma,	W)	
– Right	factors	(beta,	alpha)	
– Orthogonaliza=on	(W,	alpha)	



Glioblastoma	data	
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Figure 5: Low-dimensional representation of the glioblastoma dataset. Upper panels provide two-dimensional
representations of the data: (A) PCA (on TC-normalized counts); (C) ZIFA (on TC-normalized counts);
(E) ZINB (no normalization needed). Lower panels provide barplots of the absolute correlation between the
first two components and a set of QC measures (see Methods): (B) PCA (on TC-normalized counts); (D)
ZIFA (on TC-normalized counts); (F) ZINB (no normalization needed). ZINB leads to a low-dimensional
representation that is less influenced by technical variation and to tighter, biologically meaningful clusters.
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Glioblastoma	data	
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Figure 3: Average silhouette width, real datasets. (a) V1 dataset; (b) S1/CA1 dataset; (c) Glioblastoma
dataset; (d) mESC dataset. Silhouette widths were computed in the low-dimensional space, using the
groupings provided by the authors of the original publications: unsupervised clustering procedure (a, b),
observed characteristics of the samples, such as patient (c) and culture condition (d). PCA and ZIFA were
applied after normalization: unnormalized (RAW), total-count (TC), trimmed-mean of M values (TMM),
and full-quantile (FQ). For the mESC dataset (d), we fitted the ZINB-WaVE model with batch as a sample-
level covariate (ZINB-Batch) in addition to the default model with only a sample-level intercept (see Fig.
4).
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•  Less	correlated	with	technical	effects	
•  Bejer	clusters	cells	by	pa=ent	



mESC	data:	decreasing	batch	effect	
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Figure 4: ZINB-WaVE applied to the mESC dataset. Upper panels provide two-dimensional representations
of the data, with cells color-coded by batch and shape reflecting culture conditions: (a) Default ZINB-
WaVE with only sample-level intercept; (b) ZINB-WaVE with batch as known sample-level covariate. (c)
Average silhouette widths by biological condition for ZINB-WaVE with and without batch covariate; (d)
Average silhouette widths by batch for ZINB-WaVE with and without batch covariate. Although the data
cluster primarily based on culture condition, batch e�ects are evident in (a). Accounting for batch e�ects in
the ZINB-WaVE model (b) leads to slightly better clustering by biological condition (c) and removes the
clustering by batch (d). Note the di�erence in scale between the barplots of (c) and (d).
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3	cultures	media,	2	batches.	Add	batch	as	covariate	



Simula=ons:	
W	es=ma=on	

Figure 3: Between-sample distances and silhouette widths, ZINB simulation model. Panel A: Boxplots of
correlations between between-sample distances based on true and estimated low-dimensional representations
of the data for datasets simulated from the V1 dataset. Panel B: Same as (A) for simulations based on the
S1/CA1 dataset. Panel C: Boxplots of silhouette widths for true clusters for datasets simulated from the V1
dataset. Panel D: Same as (C) for simulations based on the S1/CA1 dataset. All datasets were simulated
from our ZINB model with zero fraction of about 80%, n = 1, 000 cells, and “harder” clustering (b = 2)
*** SD: Add values of other parameters, in simulation and in fit. (see Methods). Between-sample distance
matrices and silhouette widths were based on W for ZINB, the first two principal components for PCA, and
the first two latent variables for ZIFA. For ZINB, di�erent K (K œ {1, 2, 3, 4}) were used. For PCA and
ZIFA, di�erent normalization methods were used. Each boxplot is based on n values corresponding to each
of the n samples and defined as averages of correlations (A, B) or silhouette widths (C, D) over B = 10
simulations. Colors correspond to the di�erent methods. See Figure S6 for more scenarios. *** SD: Legend
for method: Use upper-case for ZINB and K. *** DR: DR: swap panels (B) and (C) *** FP: Done. ***
DR: Consider combining this and next figure if we need a max of 6 figures. *** FP: Ok.

6

-  Simulate	clusters	of	
single	cells	(from	real	
data)	with	cell-	and	
gene-level	offsets	

-  Following	the	ZINB	
model	with	K=2	latent	
factors	

-  Check	how	well	W	is	
recovered,	and	the	
clustering	is	recovered	

Figure 3: Between-sample distances and silhouette widths, ZINB simulation model. Panel A: Boxplots of
correlations between between-sample distances based on true and estimated low-dimensional representations
of the data for datasets simulated from the V1 dataset. Panel B: Same as (A) for simulations based on the
S1/CA1 dataset. Panel C: Boxplots of silhouette widths for true clusters for datasets simulated from the V1
dataset. Panel D: Same as (C) for simulations based on the S1/CA1 dataset. All datasets were simulated
from our ZINB model with zero fraction of about 80%, n = 1, 000 cells, and “harder” clustering (b = 2)
*** SD: Add values of other parameters, in simulation and in fit. (see Methods). Between-sample distance
matrices and silhouette widths were based on W for ZINB, the first two principal components for PCA, and
the first two latent variables for ZIFA. For ZINB, di�erent K (K œ {1, 2, 3, 4}) were used. For PCA and
ZIFA, di�erent normalization methods were used. Each boxplot is based on n values corresponding to each
of the n samples and defined as averages of correlations (A, B) or silhouette widths (C, D) over B = 10
simulations. Colors correspond to the di�erent methods. See Figure S6 for more scenarios. *** SD: Legend
for method: Use upper-case for ZINB and K. *** DR: DR: swap panels (B) and (C) *** FP: Done. ***
DR: Consider combining this and next figure if we need a max of 6 figures. *** FP: Ok.
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Simula=on:	cluster	recovery	

It is important to note that the previous results were obtained for data simulated from the ZINB model
underlying our estimation procedure. It is hence not surprising that the ZINB procedure outperformed its
competitors. To provide a fairer comparison, we also assessed the methods on data simulated from the model
proposed by Lun & Marioni [34]. *** DR: Fanny, please check reference *** FP: Ideally, I would refer to the
github repo MarioniLab/PlateE�ects2016 because the main focus of the paper is not simulations whereas
in their github repo they explain how to simulate scRNAseq datasets. But, I don’t know if people refer to
github repositories. I guess this reference is correct too. Although this model is also based on a negative
binomial distribution (see Methods), it randomly adds zeros to the data, rather than using a log-linear
model to link zero fraction and expression. *** DR: Fanny, is this true? *** FP: Zeros are not randomly
added. The way they simulate data is as follow. First, they simulate count data from a negative binomial
distribution where they estimate means and dispersions from a real dataset. Then, they fit a zero-inflated
regression to this same dataset using function zeroinfl from R package pscl to estimate the zero probability
for each gene. Finally, they use a binomial distribution with these estimated zero probabilities to decide if
an actual count is replaced by a zero or not. *** SD: How about this rephrasing: "Although this model is
also based on a negative binomial distribution (see Methods), zero counts are added separately based on an
independent Bernoulli distribution for each count, rather than using a log-linear model linking zero inflation
and expression level."
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Figure 4: Silhouette widths, Lun & Marioni [34] simulation model. Average silhouette widths for true clusters
vs. zero fraction, for n œ {100, 1, 000, 10, 000} cells *** FP: Add 10,000 cells once no more bugs in zinbFit.
For each method, silhouette widths were computed from the between-sample distance matrix based on W
for ZINB, the first two principal components for PCA, and the first two latent variables for ZIFA. Silhouette
widths were averaged over B = 10 simulations and n samples. For PCA and ZIFA, di�erent normalization
methods were used. Colors correspond to the di�erent methods. While ZINB was relatively robust to the
sample size n and zero fraction, the performance of PCA and ZIFA decreased with larger zero fraction. ***
SD: Add values of other parameters, in simulation and in fit.

When the data were simulated to have a moderate fraction of zeros (namely 40%), all methods performed

7

Simula=on	with	the	Lun	&	Marioni	(2016)	model		



CPU	=me	

Figure S15: CPU time vs. sample size for ZINB-WaVE estimation procedure. Log-log scatterplot of mean
CPU time (in seconds) vs. sample size n, for B = 10 datasets simulated from the Lun & Marioni [31] model
with n œ {50, 100, 500, 1, 000, 5, 000, 10, 000} cells, J = 1, 000 genes, zero fraction of about 60%. The following
values were used to fit the ZINB-WaVE model to these data: K = 2 unknown factors, X = 1n, cell-level
intercept (V = 1J), and common dispersion. CPU time were averaged over B = 10 simulated datasets and
standard deviations are indicated by the vertical bars. Computations were done with 7 cores on a iMac with
eight 4 GHz Intel Core i7 CPUs and 32 GB of RAM.
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On	a	recent	iMac,	16GB	of	RAM,	using	7	cores	



Try	it!	

•  hjps://github.com/drisso/zinbwave	
•  hjp://biorxiv.org/content/early/
2017/04/06/125112	



Conclusion	

•  A	model:	
– Using	ZINB	distribu=on	to	model	zero-inflated	counts	
– With	linear	structure	to	include	gene-	or	cell-specific	
covariates	

– And	low-dimensional	signal	inferred	automa=cally	

•  Fifng	the	model	works	on	simula=ons	
•  On	real	data,	bejer	captures	clustering	than	PCA	
or	ZIFA	

•  Less	correlated	with	batch	/	unwanted	varia=ons	


