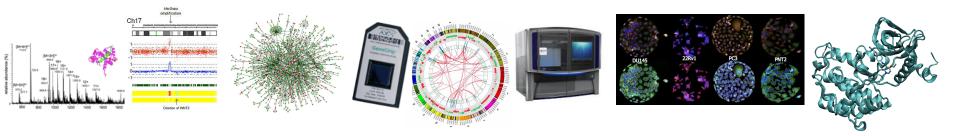
Machine Learning for cancer precision medicine

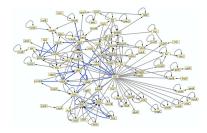
Jean-Philippe Vert

Académie de Médecine, Paris, July 4, 2017

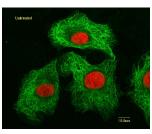
Overview



Machine learning



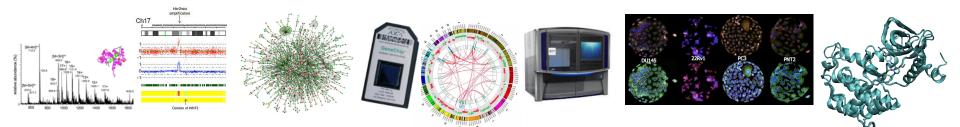
Molecular level Gene regulation Epigenetics Structure/Function prediction

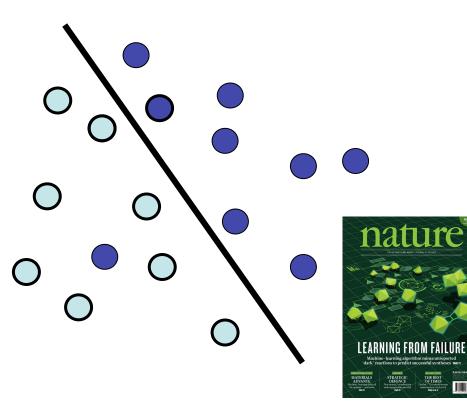


Cellular level High-content screening Chemo/Toxicogenomics Tumour heterogeneity

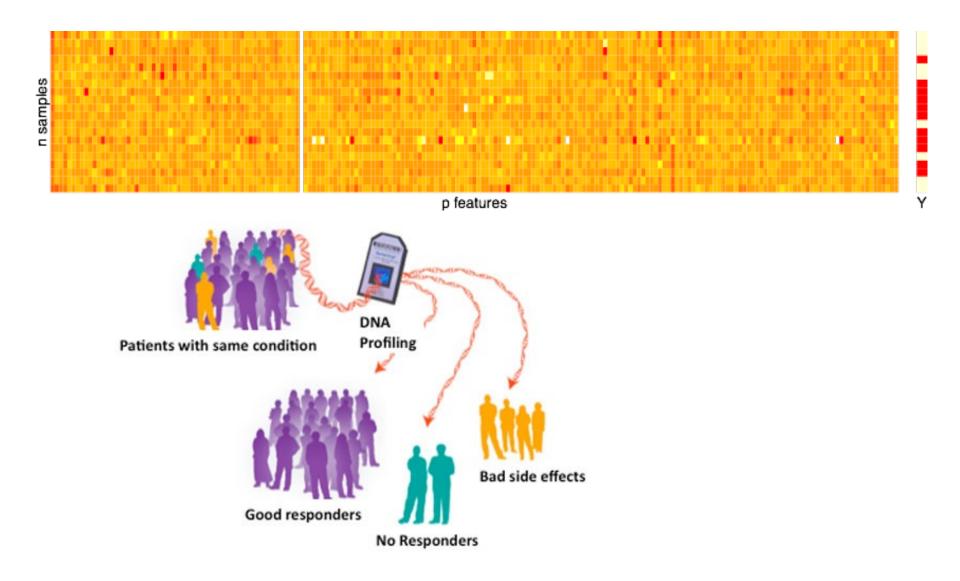
Precision medicine Patient stratification Prognostic / Predictive Side effect prediction

Machine Learning?

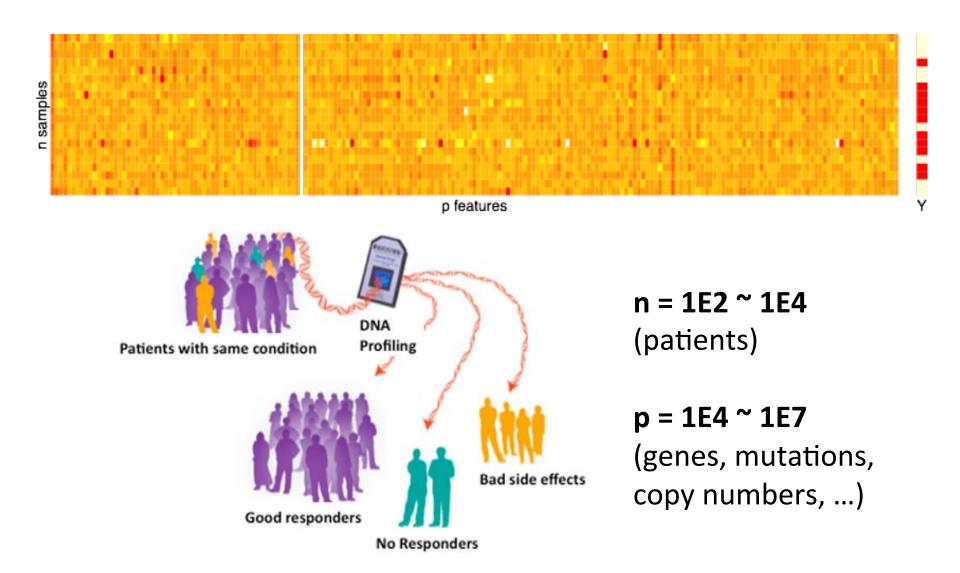




Example: Patient stratification



Problem : n << p



Learning is hard when n<<p

Lack of robust biomarkers

Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van 't Veer*†, Hongyue Dai†‡, Marc J. van de Vijver*†, Yudong D. He‡, Augustinus A. M. Hart*, Mao Mao‡, Hans L. Peterse*, Karin van der Kooy*, Matthew J. Marton‡, Anke T. Witteveen*, George J. Schreiber‡, Ron M. Kerkhoven*, Chris Roberts‡, Peter S. Linsley‡, René Bernards* & Stephen H. Friend‡

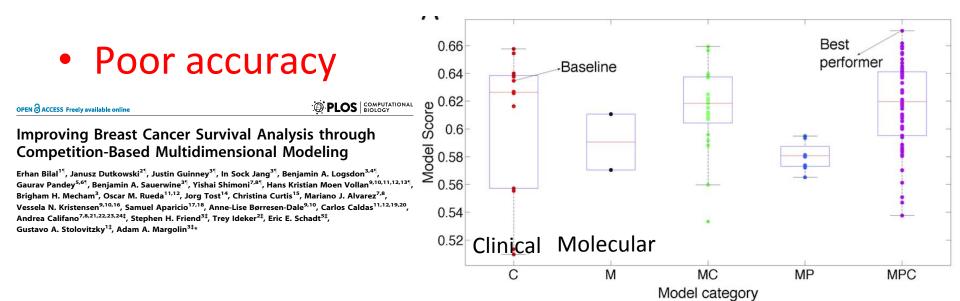
70 genes (Nature, 2002)

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

Yixin Wang, Jan G M Klijn, Yi Zhang. Anieta M Sieuwerts, Maxime P Look, Fei Yang, Dmitri Talantov, Mieke Timmermans, Marion E Meijer-van Gelder, Jack Yu, Tim Jatkoe, Els M J J Berns, David Atkins, John A Foekens

76 genes (Lancet, 2005)

Only 3 genes in common

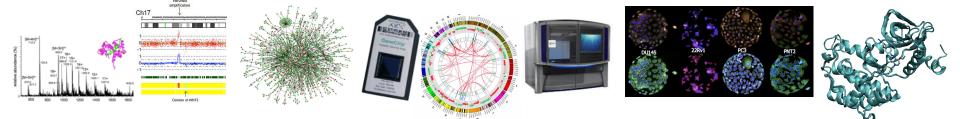


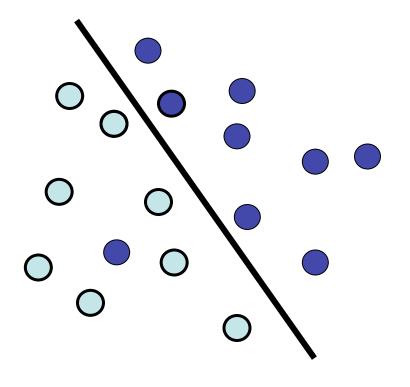
Why?

- Wrong data?
- Wrong method?
- Not enough data?
- ...?

erc ERC SMAC (2012-2017)

Statistical Machine Learning for Complex Biological Data



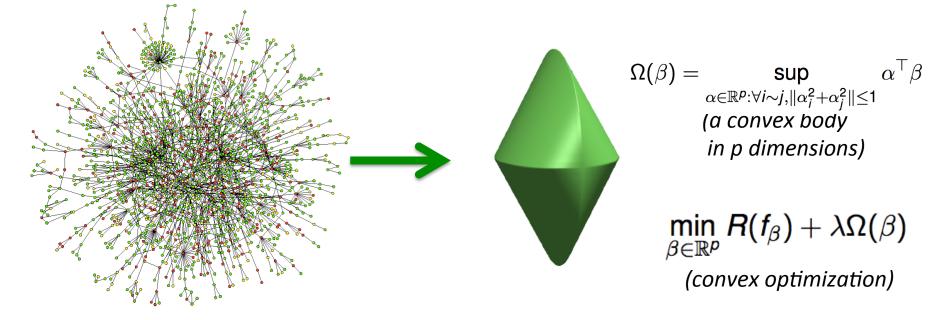


Geogral fearges ork for learning:

- $-\lim_{f \in \mathcal{F}} R(\overline{f})$ such that $\Omega(f) \leq \gamma$
- -Structured, complex data Data fitting term Penalty Class from term examples
 - -Need for efficient algorithms
- - Pritor Kmowkedge
- - Efficiente talgo mythms
- Heterogeneous data integration

Structured feature selection

• Use a gene network as « prior knowledge »



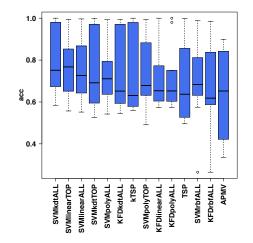
Increases stability and accuracy

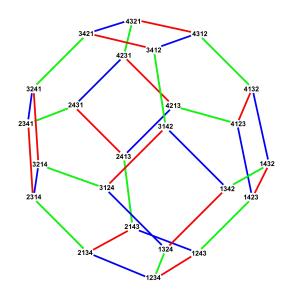
Lasso	Graph Lasso	
0.61 %	0.64 %	Breast cancer prognosis, accuracy

Change data representation

Replace $x \in \mathbb{R}^p$ by $\Phi(x) \in \{0, 1\}^{p(p-1)/2}$:

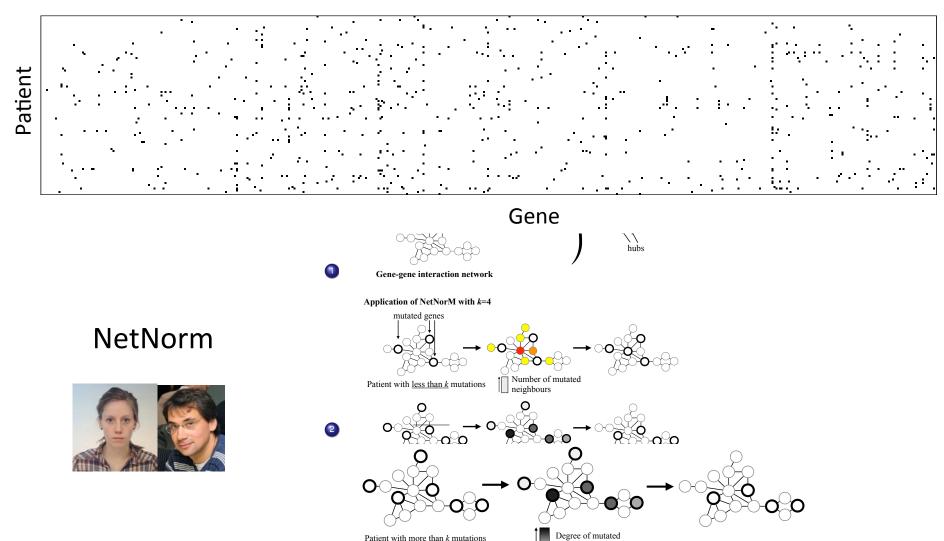
 $\Phi_{i,j}(x) = \begin{cases} 1 & \text{if } x_i \leq x_j, \\ 0 & \text{otherwise.} \end{cases}$





Dataset	No. of features	No. of samples (training/test)	
Breast Cancer 1	23624	44/7 (Non-relapse)	32/12 (Relapse)
Breast Cancer 2	22283	142 (Non-relapse)	56 (Relapse)
Breast Cancer 3	22283	71 (Poor Prognosis)	138 (Good Prognosis)
Colon Tumor	2000	40 (Tumor)	22 (Normal)
Lung Cancer 1	7129	24 (Poor Prognosis)	62 (Good Prognosis)
Lung Cancer 2	12533	16/134 (ADCA)	16/15 (MPM)
Medulloblastoma	7129	39 (Failure)	21 (Survivor)
Ovarian Cancer	15154	162 (Cancer)	91 (Normal)
Prostate Cancer 1	12600	50/9 (Normal)	52/25 (Tumor)
Prostate Cancer 2	12600	13 (Non-relapse)	8 (Relapse)

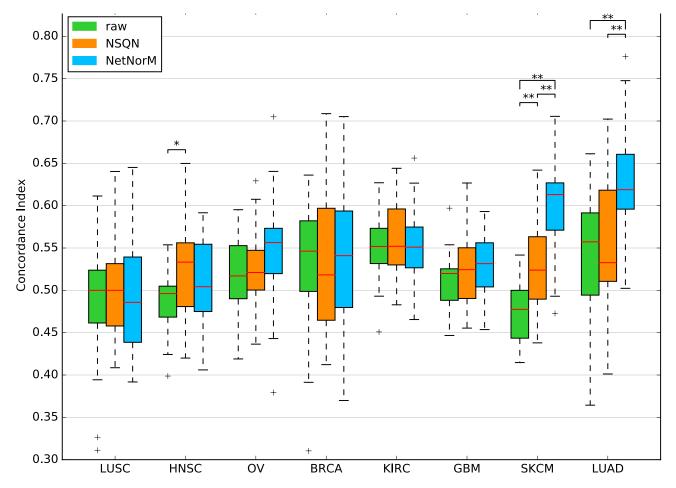
Survival prediction from Whole-exome somatic mutations



Patient with more than k mutations

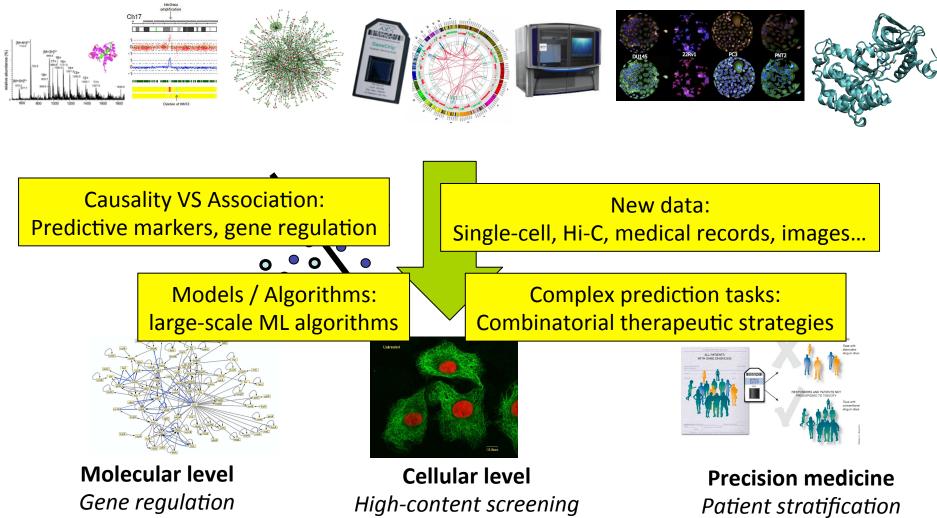
genes

Survival prediction from Whole-exome somatic mutations



Use Pathway Commons as gene network. NSQN = Network Smoothing / Quantile Normalization (Hofree et al., 2013)

Challenges



Epigenetics Structure/Function prediction **Cellular level** High-content screening Chemo/Toxicogenomics Tumour heterogeneity **Precision medicine** Patient stratification Prognostic / Predictive Side effect prediction

Thanks!

Inserm

Institut national de la santé et de la recherche médicale

The Adolph C. and Mary Sprague Miller Institute for Basic Research in Science University of California, Berkeley