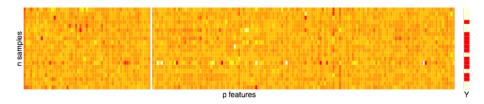
Learning on the symmetric group

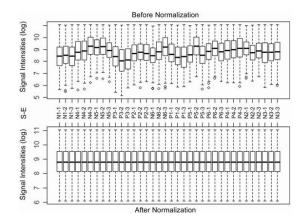
Jean-Philippe Vert

France-Japan Machine Learning workshop, ENS Paris, Septembre 21, 2017



- X gene expression profile of each patient
- Y survival information of each patient
- $n = 10^2 \sim 10^4$
- $p = 2 \times 10^4$
- Goal: learn to predict Y from X
- But... where does X come from?

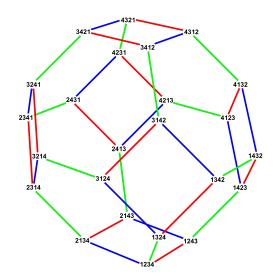
From raw data to X



- Between-sample variability: batch effect, drift over time, ...
- Typical pre-processing: Quantile normalization (per sample)
- Only the relative ordering of features within each sample is used

Learning on the symmetric group

- The symmetric group *S*_p is the set of permutations of {1,...,p}
- How to estimate Y = f(X) where $X \in S_p$?



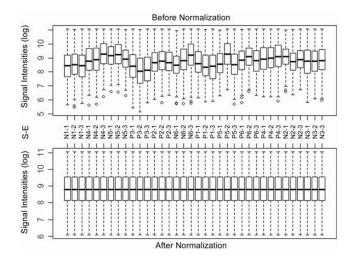
Supervised quantile normalization

2 The Kendall and Mallows kernels

Marine Le Morvan

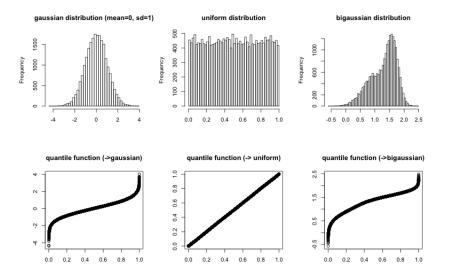
https://arxiv.org/abs/1706.00244

Standard full quantile normalization



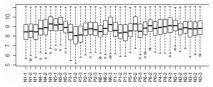
Typically followed by a predictive model f(X) on the normalized data

How to choose a "good" target distribution?



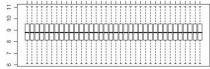
Notations

• $x_1, \ldots, x_n \in \mathbb{R}^p$ a set of *p*-dimensional samples



• $f \in \mathbb{R}^p$ a non-decreasing target distribution (CDF)

For x ∈ ℝ^p, let Φ_f(x) ∈ ℝ^p be the data after QN with target distribution f



From QN to supervised QN (SUQUAN)

Standard approaches: learn model after QN preprocessing:

- Fix f arbitrarily
- **2** QN all samples to get $\Phi_f(x_1), \ldots, \Phi_f(x_n)$
- Solution Learn a generalized linear model (w, b) on normalized data:

$$\min_{w,b} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(w^{\top} \Phi_f(x_i) + b \right) + \lambda \Omega(w) \right\}$$

SUQUAN: jointly learn f and (w, b):

$$\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{f}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(\boldsymbol{w}^\top \Phi_{\boldsymbol{f}}(\boldsymbol{x}_i) + \boldsymbol{b} \right) + \lambda \Omega(\boldsymbol{w}) + \gamma \Omega_2(\boldsymbol{f}) \right\}$$

SUQAN as matrix regression (1/2)

• For $x \in \mathbb{R}^{p}$, let $\Pi_{x} \in \mathbb{R}^{p \times p}$ the permutation matrix of *x*'s entries: $[\Pi_{x}]_{ij} = \mathbf{1} (x_{j} \text{ is the } i\text{-th smallest feature})$

• Quantile normalized *x* with target distribution *f* is:

 $\Phi_f(x) = \Pi_x f$

• Example:

$$x = \begin{pmatrix} 4.5 \\ 1.2 \\ 10.1 \\ 8.9 \end{pmatrix} \quad \Pi_x = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad f = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 4 \end{pmatrix}$$
$$\Phi_f(x) = \Pi_x f = \begin{pmatrix} 1 \\ 0 \\ 4 \\ 3 \end{pmatrix}$$

SUQAN as matrix regression (2/2)

SUQUAN solves

$$\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{f}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(\boldsymbol{w}^\top \Phi_{\boldsymbol{f}}(\boldsymbol{x}_i) + \boldsymbol{b} \right) + \lambda \Omega(\boldsymbol{w}) + \gamma \Omega_2(\boldsymbol{f}) \right\}$$

$$= \min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{f}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell \left(\boldsymbol{w}^\top \Pi_{\boldsymbol{x}_i} \boldsymbol{f} + \boldsymbol{b} \right) + \lambda \Omega(\boldsymbol{w}) + \gamma \Omega_2(\boldsymbol{f}) \right\}$$

$$= \min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{f}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell \left(< \boldsymbol{w} \boldsymbol{f}^\top, \Pi_{\boldsymbol{x}_i} >_{\boldsymbol{F}} + \boldsymbol{b} \right) + \lambda \Omega(\boldsymbol{w}) + \gamma \Omega_2(\boldsymbol{f}) \right\}$$

- A particular rank-1 matrix optimization, x is replaced by Π_x
- Non-convex
- Local optimum found by alternatively optimizing f and w

Ridge

$$\mathcal{F}_0 = \left\{ f \in \mathbb{R}^p \, : \, \frac{1}{p} \sum_{i=1}^p f_i^2 \leq 1 \right\} \, .$$

Non-decreasing

 $\mathcal{F}_{\mathsf{BND}} = \mathcal{F}_0 \cap \mathcal{I}_0$, where $\mathcal{I}_0 = \{ f \in \mathbb{R}^p : f_1 \le f_2 \le \ldots \le f_p \}$

Non-decreasing and smooth

$$\mathcal{F}_{\text{SPAV}} = \left\{ f \in \mathcal{I}_0 \ : \ \sum_{j=1}^{p-1} (f_{j+1} - f_j)^2 \leq 1 \right\} \ .$$

SUQUAN-BND and SUQUAN-PAVA

Algorithm 2: SUQUAN-BND and SUQUAN-SPAV

Input: $(x_1, y_1), \dots, (x_n, y_n), f_{init} \in \mathcal{I}_0, \lambda \in \mathbb{R}$ Output: $f \in \mathcal{I}_0$ target quantile 1: for i = 1 to n do 2: $rank_i, order_i \leftarrow \operatorname{sort}(x_i)$ 3: end for 4: $w, b \leftarrow \operatorname{argmin}_{w, b} \frac{1}{n} \sum_{i=1}^n \ell_i \left(w^\top f_{init}[rank_i] + b \right) + \lambda ||w||^2$ (standard linear model optimisation) 5: $f \leftarrow \operatorname{argmin}_{f \in \mathcal{F}_{BND}} \frac{1}{n} \sum_{i=1}^n \ell_i \left(f^\top w[order_i] + b \right)$ (isotonic optimisation problem using PAVA as prox) OR $f \leftarrow \operatorname{argmin}_{f \in \mathcal{F}_{SPAV}} \frac{1}{n} \sum_{i=1}^n \ell_i \left(f^\top w[order_i] + b \right)$ (smoothed isotonic optimisation problem using SPAV as prox)

- Alternate optimization in w and f, monotonicity constraint on f
- Accelerated proximal gradient optimization for *f*, using the Pool Adjacent Violators Algorithm (PAVA, Barlow et al. (1972)) or the Smoothed Pool Adjacent Violators algorithm (SPAV, Sysoev and Burdakov (2016)) as proximal operator.

A variant: SUQUAN-SVD

 $\begin{array}{l} \textbf{Algorithm 1: SUQUAN-SVD} \\ \hline \textbf{Input:} \\ (x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^p \times \{-1, 1\} \\ \textbf{Output:} \ f \in \mathcal{F}_0 \ \text{target quantile} \\ 1: \ M_{LDA} \leftarrow 0 \in \mathbb{R}^{p \times p} \\ 2: \ n_{+1} \leftarrow |\{i : y_i = +1\}| \\ 3: \ n_{-1} \leftarrow |\{i : y_i = -1\}| \\ 4: \ \textbf{for} \ i = 1 \ \textbf{to} \ n \ \textbf{do} \\ 5: \ \ Compute \ \Pi_{x_i} \ (\text{by sorting} \ x_i) \\ 6: \ \ M_{LDA} \leftarrow M_{LDA} + \frac{y_i}{n_{y_i}} \Pi_{x_i} \\ 7: \ \textbf{end for} \\ 8: \ (\sigma, w, f) \leftarrow SVD(M_{LDA}, 1) \end{array}$

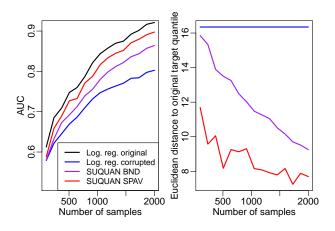
- Ridge penalty (no monotonicity constraint), equivalent to rank-1 regression problem
- SVD finds the closest rank-1 matrix to the LDA solution:

$$M_{LDA} = \frac{1}{n_{+}} \sum_{i: y_{i}=+1} \Pi_{x_{i}} - \frac{1}{n_{-}} \sum_{i: y_{i}=+1} \Pi_{x_{i}}$$

Complexity O(npln(p)) (same as QN only)

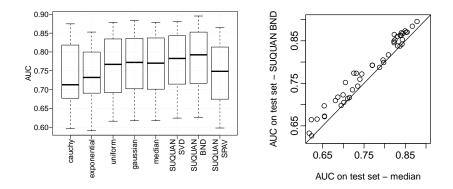
Experiments: Simulations

- True distribution of X entries is normal
- Corrupt data with a cauchy, exponential, uniform or bimodal gaussian distributions.
- p = 1000, *n* varies, logistic regression.



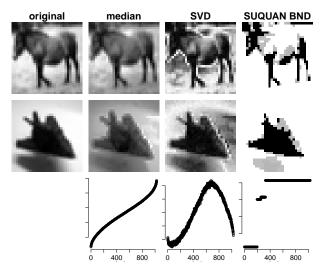
Experiments: CIFAR-10

- Image classification into 10 classes (45 binary problems)
- *n* = 5,000 per class, *p* = 1,024 pixels



Experiments: CIFAR-10

- Example: horse vs. plane
- Different methods learn different quantile distributions



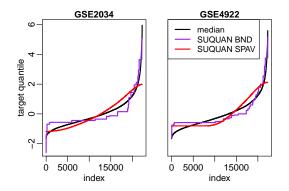
• Breast cancer prognosis from gene expression data.

- X =expression levels of 22,283 genes of the tumour at diagnosis
- Y = 1 if cancer relapse within 6 years of diagnosis, 0 otherwise
- 4 datasets:

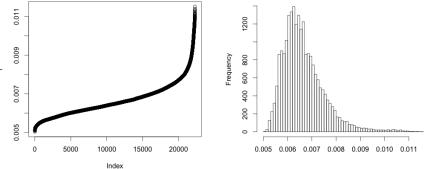
DATASET NAME	# PATIENTS	# POSITIVES	% POSITIVES
GSE1456	141	37	0.26
GSE2034	271	104	0.38
GSE2990	106	32	0.30
GSE4922	225	73	0.32

Results: gene expression data

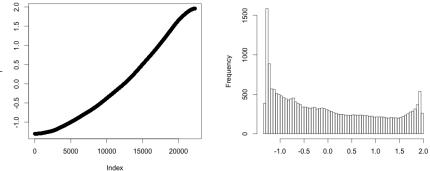
	LOGISTIC REGRESSION					SUQUAN				
	RAW	RMA	CAUCHY	EXP.	UNIF.	GAUS.	MEDIAN	SVD	BND	SPAV
GSE1456	65.94	68.73	59.56	68.86	68.72	69.00	69.06	57.60	71.44	69.60
GSE2034	74.52	75.42	61.91	74.53	75.22	76.45	74.92	52.61	70.50	76.11
GSE2990	57.01	60.43	54.72	61.25	56.25	58.66	59.72	52.51	59.22	59.94
GSE4922	58.52	58.86	55.24	58.81	55.66	60.01	59.18	52.39	61.82	61.41
AVERAGE	64.00	65.86	57.86	65.86	63.96	66.03	65.72	53.78	65.75	66.77



Estimated distribution: iteration=0

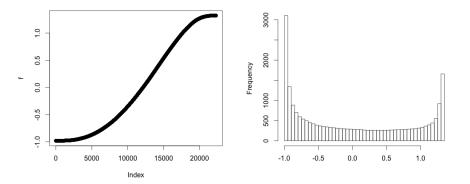


Estimated distribution: iteration=1



-

Estimated distribution: iteration=2



Supervised quantile normalization

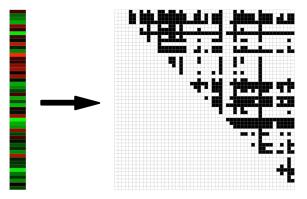
Yunlong Jiao

https://hal.archives-ouvertes.fr/hal-01279273

An idea: all pairwise comparisons

Replace $x \in \mathbb{R}^p$ by $\Phi(x) \in \{0, 1\}^{p(p-1)/2}$:

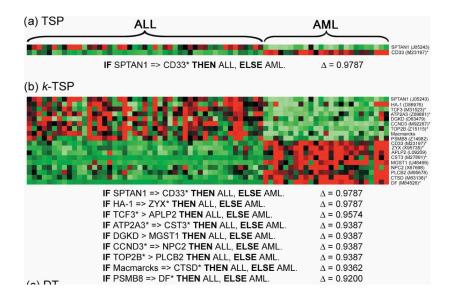
$$\Phi_{i,j}(x) = egin{cases} 1 & ext{if } x_i \leq x_j \,, \ 0 & ext{otherwise.} \end{cases}$$



One sample x p features

Mapping f(x) p(p-1)/2 bits

Related work: Top scoring pairs (TSP)



(Geman et al., 2004; Tan et al., 2005; Leek, 2009)

Practical challenge

- Need to store $O(p^2)$ bits per sample
- Need to train a model in O(p²) dimensions

Theorem (Wahba, Schölkopf, ...)

Training a linear model over a representation $\Phi(x) \in \mathbb{R}^Q$ of the form:

$$\min_{w \in \mathbb{R}^{Q}} \frac{1}{n} \sum_{i=1}^{n} \ell(w^{\top} \Phi(x_{i}), y_{i}) + \lambda ||w||^{2}$$

can be done efficiently, independently of Q, if the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$

can be computed efficiently.

Ex: ridge regression, $O(Q^3 + nQ^2)$ becomes $O(n^3 + n^2T)$ Other: SVM, logistic regression, Cox model, survival SVM, ...

Kernel trick for us: Kendall's τ

$$\Phi(x)^{\top}\Phi(x') = \tau(x, x')$$
 (up to a scaling)

Good news for SVM and kernel methods!

More formally

- For two permutations σ, σ' let n_c(σ, σ') (resp. n_d(σ, σ')) the number of concordant (resp. discordant) pairs.
- The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

$$K_{\tau}(\sigma,\sigma') = \frac{n_{c}(\sigma,\sigma') - n_{d}(\sigma,\sigma')}{\binom{p}{2}}$$

• The Mallows kernel is defined for any $\lambda \ge 0$ by

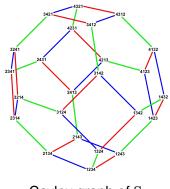
$$K_{M}^{\lambda}(\sigma,\sigma') = e^{-\lambda n_{d}(\sigma,\sigma')}$$

Theorem (Jiao and V., 2015)

The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in $O(p \log p)$ time.



Cayley graph of \mathbb{S}_4

- Kondor and Barbarosa (2010) proposed the diffusion kernel on the Cayley graph of the symmetric group generated by adjacent transpositions.
- Computationally intensive (*O*(*p^p*))
- Mallows kernel is written as

$$K_{M}^{\lambda}(\sigma,\sigma')=\boldsymbol{e}^{-\lambda n_{d}(\sigma,\sigma')},$$

where $n_d(\sigma, \sigma')$ is the shortest path distance on the Cayley graph.

• It can be computed in $O(p \log p)$

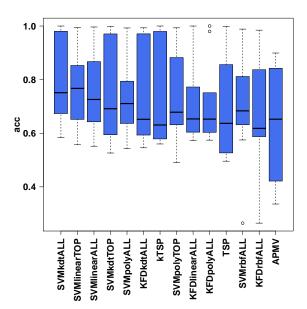
Datasets

Dataset	No. of features	No. of samples (training/test)		
		C_1	C_2	
Breast Cancer 1	23624	44/7 (Non-relapse)	32/12 (Relapse)	
Breast Cancer 2	22283	142 (Non-relapse)	56 (Relapse)	
Breast Cancer 3	22283	71 (Poor Prognosis)	138 (Good Prognosis)	
Colon Tumor	2000	40 (Tumor)	22 (Normal)	
Lung Cancer 1	7129	24 (Poor Prognosis)	62 (Good Prognosis)	
Lung Cancer 2	12533	16/134 (ADCA)	16/15 (MPM)	
Medulloblastoma	7129	39 (Failure)	21 (Survivor)	
Ovarian Cancer	15154	162 (Cancer)	91 (Normal)	
Prostate Cancer 1	12600	50/9 (Normal)	52/25 (Tumor)	
Prostate Cancer 2	12600	13 (Non-relapse)	8 (Relapse)	

Methods

- Kernel machines Support Vector Machines (SVM) and Kernel Fisher Discriminant (KFD) with Kendall kernel, linear kernel, Gaussian RBF kernel, polynomial kernel.
- Top Scoring Pairs (TSP) classifiers Tan et al. (2005).
- Hybrid scheme of SVM + TSP feature selection algorithm.

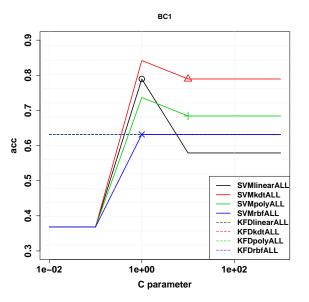
Results



Kendall kernel SVM

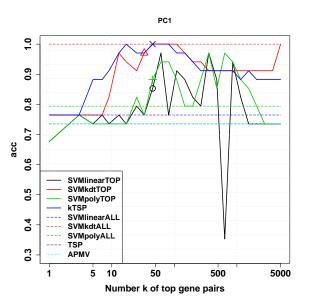
• Competitive accuracy!

- Less sensitive to regularization parameter!
- No need for feature selection!



Kendall kernel SVM

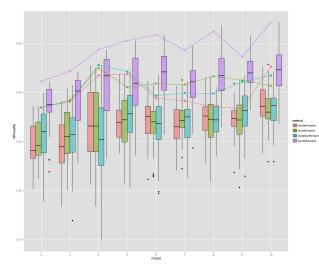
- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!



Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!

Application: clustering



- APA data (full rankings)
- *n* = 5738, *p* = 5
- (new) Kernel k-means vs (standard) k-means in S₅
- Show silhouette as a function of number of clusters (higher better)

Extension to partial rankings

Two interesting types of partial rankings are interleaving partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k}, \quad k \leq n.$$

and top-k partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k} \succ X_{\text{rest}}, \quad k \leq n.$$

• Partial rankings can be uniquely represented by a set of permutations compatible with all the observed partial orders.

Theorem

For these two particular types of partial rankings, the convolution kernel (Haussler, 1999) induced by Kendall kernel

$$K_{\tau}^{\star}(R,R') = \frac{1}{|R||R'|} \sum_{\sigma \in R} \sum_{\sigma' \in R'} K_{\tau}(\sigma,\sigma')$$

can be evaluated in $O(k \log k)$ time.

Extension to partial rankings

Two interesting types of partial rankings are interleaving partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k}, \quad k \leq n.$$

and top-k partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k} \succ X_{\text{rest}}, \quad k \leq n.$$

• Partial rankings can be uniquely represented by a set of permutations compatible with all the observed partial orders.

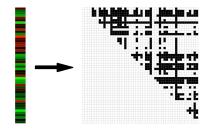
Theorem

For these two particular types of partial rankings, the convolution kernel (Haussler, 1999) induced by Kendall kernel

$$K_{\tau}^{\star}(R,R') = \frac{1}{|R||R'|} \sum_{\sigma \in R} \sum_{\sigma' \in R'} K_{\tau}(\sigma,\sigma')$$

can be evaluated in $O(k \log k)$ time.

Extension to smoother, continuous representations



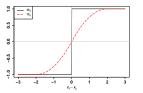
One sample x p features

Mapping f(x) p(p-1)/2 bits

Instead of Φ : ℝ^p → {0, 1}^{p(p-1)/2}, consider the continuous mapping Ψ_a : ℝ^p → ℝ^{p(p-1)/2}:

$$\Psi_a(x) = \mathbb{E}\Phi(x+\epsilon)$$
 with $\epsilon \sim (\mathcal{U}[-\frac{a}{2},\frac{a}{2}])^n$

• Corresponding kernel $G_a(x, x') = \Psi_a(x)^\top \Psi_a(x')$



G_a(x, x') can be computed exactly in O(p²) by explicit computation of Ψ_a(x) in ℝ^{p(p-1)/2}

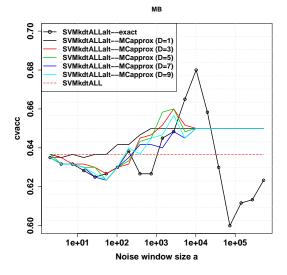
 G_a(x, x') can be computed approximately in O(D²p log p) by Monte-Carlo approximation:

$$ilde{G}_{a}(x,x') = rac{1}{D^2}\sum_{i,j=1}^{D}K(x+\epsilon_i,x'+\epsilon'_j)$$

• Theorem: for supervised learning, Monte-Carlo approximation is better¹ than exact computation when $n = o(p^{1/3})$

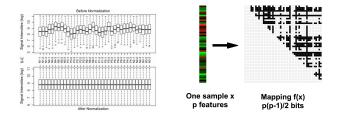
¹faster for the same accuracy

Performance of $G_a(x, x)$



Supervised quantile normalization

2) The Kendall and Mallows kernels



Representing omics data as permutations has some potential

- Kendall and Mallows kernel in $O(p \ln(p))$
- SUQUAN supervised quantile normalization as matrix regression
- Ongoing work:
 - Extension of SUQUAN to nonlinear models
 - Extention of SUQUAN to Kendall representation

Thanks

Inserm

Institut national de la santé et de la recherche médicals

The Adolph C. and Mary Sprague Miller Institute for Basic Research in Science University of California, Berkeley

- R. E. Barlow, D. Bartholomew, J. M. Bremner, and H. D. Brunk. *Statistical inference under order restrictions; the theory and application of isotonic regression.* Wiley, New-York, 1972.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In *Proceedings of The 32nd International Conference on Machine Learning*, volume 37 of *JMLR:W&CP*, pages 1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.
- M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244, arXiv, 2017.
- O. Sysoev and O. Burdakov. A smoothed monotonic regression via I2 regularization. Technical Report LiTH-MAT-R-2016/01-SE, Department of mathematics, Linköping University, 2016. URL http://liu.diva-portal.org/smash/get/diva2:905380/FULLTEXT01.pdf.
- A. C. Tan, D. Q. Naiman, L. Xu, R. L. Winslow, and D. Geman. Simple decision rules for classifying human cancers from gene expression profiles. *Bioinformatics*, 21(20):3896–3904, Oct 2005. doi: 10.1093/bioinformatics/bti631. URL http://dx.doi.org/10.1093/bioinformatics/bti631.