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ABOUT THE ABEL PRIZE
Yves Meyer received the Abel Prize from H.M. King
Harald

H.M. King Harald presented the Abel Prize to Yves Meyer of the Ecole
normale supérieure Paris-Saclay, France at an award ceremony in Oslo on
23 May. He receives the prize for his pivotal role in the development of the
theory of says John Rognes, chair of the Abel
Among the pr guests ing the award ceremony
was the French to Norway, cois Dobelle and the
Norwegian Minister of Education and Research, Torbjgrn Rge Isaksen.
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Typical problem
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p features

@ X € R™P gene expression profile of each patient
@ Y € Y" survival information of each patient

e n=10%~10%

e p=2x10*

@ Goal: learn to predict Y from X

@ Difficult (n < p)



Regularized linear models
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Fit a linear model 5 € RP by solving
min, R(Y,XB) + AJ(B),
where
@ R(Y,Xp) is an empirical risk to measures the fit to the training
data

@ J(p) is a penalty to control the complexity of the model
@ )\ > 0is aregularization parameter



Standard regularizations

min R(Y, XB) + AJ(3)

BERP
where
@ Lasso: J(B) = ||B]|1 for gene selection.
@ Ridge: J(B3) = ||8]|3 to address n > m.
o Elastic net: J(8) = a|8ll5 + (1 — )| 8]l
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Network-based regularizations




Jg(8)=>"(5— ;)2  (Rapaportetal., 2007)
inj
Jg(B) = alBlli + (1 —a)» (8 — )  (Liand Li, 2008)
i~j
Jg(B) = sup a8 (Jacob et al., 2009)

Q€RP :Vinj oelg +o¢]2§1

Jo(B)=allBlls+(1—a)> _[Bi— B  (Hoefling, 2010)
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Jg(8)=>"(5 )7  (Rapaportetal., 2007)
inj
Jo(B) = allplls + (1 —a)> (8 —B)*  (Liand Li, 2008)
inj
Jg(B) = sup a8 (Jacob et al., 2009)

Q€RP :Vinj oelg +o¢]2§1

Jo(B)=allBlls+(1—a)> _[Bi— B  (Hoefling, 2010)
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From smoothness penalty to Laplacian

> (Bi—p)2=p"LB

i~f

where L = D — Ais the graph Laplacian.

1 1 0O -1 0 0
3 5 0 1 -1 0 0

L=] -1 -1 3 -1 0

4 0 0 -1 2 -1



From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"s
@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
of the Fourier basis
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From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:

@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”

0.2 0.4

0.0

-04 -0.2

of the Fourier basis

lambda = 0.12

b=U"p

Lambda = 0.76
o @

o @
@



From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"s
@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
of the Fourier basis
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From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:

@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
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From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"p

@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”

of the Fourier basis
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From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"s
@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
of the Fourier basis
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From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"s
@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
of the Fourier basis

Lambda = 3.6
lambda = 3
.| @
o
[
X @
< O
o
- ©
o
o |
° o
. o
S

° o —e 6 —0o ° .
T T T T



From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"s
@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
of the Fourier basis
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From Laplacian to Fourier analysis: L = UNU'

@ Eigenvectors U of L form the Fourier basis:
B=U"s
@ Eigenvalues A = (0 = Ay < ... < )\p) represent the "frequencies”
of the Fourier basis
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Smoothness in the Fourier domain

@ Therefore, the smoothness penalty penalizes Fourier coefficients
corresponding to high frequencies:

p
JB) =D (8= B =BTLB=BTUNUTB=BTAB="> N\fF
invj i=1
"the linear model mapped on the graph
should have little energy at high frequency”
@ Rapaport et al. (2007) extends this to more general penalties:

p
Jp(B) =D _(M)B? st B=UpB

i=1

for ¢ : R — R* non-decreasing.



Fourier vs wavelets

Wavelets

Fourier

Localized in frequency

Localized in frequency AND
space



Wavelets on graphs

@ A family of vectors {V, s} C RP where
e v e [1,p]is a vertex (space)
e sc RT is a scale (frequency)

@ In practice we choose a small number of scales sy < ... < sg
@ This results in p x S vectors (overcomplete basis)

https://www.wolfram.com/mathematica/new—in-8/wavelet—-analysis/
continuous-wavelet-transform- (cwt) .html


https://www.wolfram.com/mathematica/new-in-8/wavelet-analysis/continuous-wavelet-transform-(cwt).html
https://www.wolfram.com/mathematica/new-in-8/wavelet-analysis/continuous-wavelet-transform-(cwt).html

Example on graphs
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Fig. 4. Spectral graph wavelets on Minnesota road graph, with K =100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)-~(f) wavelets, scales 1-4.

(Hammond et al 2011)
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(Hammond et al., 2011)



How to make the wavelet basis {V, ;}?

@ Hammond et al. (2011) propose spectral graph wavelets
@ Formally, at scale s > 0,

WS = (\U175’ e ’\Up,s) - Ug(SA)UT

where g : R™ — R* is a function that satisfies
@ g is a band-pass filter (localization in frequency)
@ g is smooth near 0 (this ensures localization in space)




Graph wavelet-based regularization

@ Given a graph, compute a redundant set of S x p wavelet basis at
different scales:
B:(‘US1| |\USS)

@ Take for penalty the atomic norm:

Sxp Sxp
J(B) = min {Z EE-EDY CIBI}
i=1 i=1

@ J(B) is small when g is a sum of a few atoms
@ The atom Vg, has weights in a neighborhood of v of "size" s



Summary: Fourier vs. wavelet penalty

min (Y, XB) + AJ(9)

@ Fourier: X A
Jo(B) = ¢(N)B 5 st B=UpB

B will be smooth on the graph

@ Wavelet
J(B) =min{|c|1 : 8= Bc}

B will decompose as a sum of localized functions on the graph
(pathways?)



@ Protein-protein interaction (PPI) network obtained from Human
Protein Reference Database (HPRD).

@ METABRIC breast cancer dataset

- n= 1,981 breast cancer samples paired with survival information
of patients.

- Expression data of a total of 24,771 genes available, among which
p = 9,117 genes are found with known interaction in HPRD.

@ Benchmark study comparing 6 penalty functions:

Label Penalty function J(8) Network-based | Gene selection
ridge 118115
lasso 18114 v
e-net allBlh + (1 — a)llBll3 v
lap Z/N/(/Bi — 5/‘)2 v
laplasso | al|Bl1 + (1 —a) > (8 — Bj)? v 4
wavelet ming |01 st B =Wwo v v




Prediction performance
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Boxplots on survival risk prediction performance evaluated by concordance index scores over
5-fold cross-validation repeated 10 times of the METABRIC data.



Prediction performance

Label Mean Cl scores (- SD) | Network-based | Gene selection
ridge 0.636 (+£0.018)
lap 0.632 (+0.0193) v
laplasso 0.6312(+0.0185) v v
e-net 0.6304 (+0.0183) v
wavelet 0.6295 (+0.0198) v v
lasso 0.626 (+0.0177) v

Mean concordance index (Cl) scores (+ standard deviation) of survival risk prediction over 5-fold
cross-validation repeated 10 times of the METABRIC data. Methods are ordered by decreasing
mean Cl scores.



Gene selection performance: Stability
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Stability performance of gene selection related to breast cancer survival, estimated over 100

random experiments. The black dotted curve denotes random selection.



Gene selection performance: Connectivity

1000 label
== lasso
e g—net

=&~ |aplasso

wavelet

number of connecting edges

N
o

10 1000
number of selected genes

Connectivity performance of gene selection related to breast cancer survival, where special
marks correspond to the number tuned by cross-validation. The black dotted curve denotes
random selection.



Gene selection performance: Interpretability
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Figure: Gene subnetworks related to breast cancer survival identified by regularization

methods identified by the elastic net (10 genes connected out of 112 selected) or the Laplacian
lasso (10 genes connected out of 100 selected).



Gene selection performance: Interpretability

Figure: Gene subnetworks related to breast cancer survival identified by regularization methods
identified by network-based wavelet smoothing (82 genes connected out of 109 selected).



Conclusion

@ Can biological networks help define a structure on
high-dimensional omics data?

@ Fourier-based penalties (smoothness, diffusion...) already exist

@ Wavelets-based penalties decompose a signal over a basis

@ localized in space
e localized in frequency

@ Preliminary results on gene expression classification
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