Graph Wavelets to Analyze Genomic Data with Biological Networks

Yunlong Jiao and Jean-Philippe Vert

SUPERTEURE

"Emerging Topics in Biological Networks and Systems Biology" symposium, Swedish Collegium for Advanced Study, Uppsala, October 11, 2017

Motivation

Personalized CancerTherapy

Molecular Profiling

Markers predictive of drug sensitivity/resistance
Markers predictive of adverse events
https://pct.mdanderson.org

Typical problem

- $X \in \mathbb{R}^{n \times p}$ gene expression profile of each patient
- $Y \in \mathcal{Y}^{n}$ survival information of each patient
- $n=10^{2} \sim 10^{4}$
- $p=2 \times 10^{4}$
- Goal: learn to predict Y from X
- Difficult $(n<p)$

Regularized linear models

Fit a linear model $\beta \in \mathbb{R}^{p}$ by solving

$$
\min _{\beta \in \mathbb{R}^{p}} R(Y, X \beta)+\lambda J(\beta),
$$

where

- $R(Y, X \beta)$ is an empirical risk to measures the fit to the training data
- $J(\beta)$ is a penalty to control the complexity of the model
- $\lambda>0$ is a regularization parameter

Standard regularizations

$$
\min _{\beta \in \mathbb{R}^{p}} R(Y, X \beta)+\lambda J(\beta)
$$

where

- Lasso: $J(\beta)=\|\beta\|_{1}$ for gene selection.
- Ridge: $J(\beta)=\|\beta\|_{2}^{2}$ to address $n \gg m$.
- Elastic net: $J(\beta)=\alpha\|\beta\|_{2}^{2}+(1-\alpha)\|\beta\|_{1}$

Network-based regularizations

- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ a graph of genes
- $J_{\mathcal{G}}(\beta)=$?
- β should be "smooth" on the graph?
- Selected genes should be connected?

Examples

$$
\begin{aligned}
& J_{\mathcal{G}}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2} \quad \text { (Rapaport et al., 2007) } \\
& J_{\mathcal{G}}(\beta)=a\|\beta\|_{1}+(1-a) \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2} \quad \text { (Li and Li, 2008) } \\
& J_{\mathcal{G}}(\beta)=\sup _{\alpha \in \mathbb{R}^{p}: \forall i \sim j \alpha_{i}^{2}+\alpha_{i}^{2}<1} \alpha^{\top} \beta \quad \text { (Jacob et al., 2009) }
\end{aligned}
$$

$$
J_{\mathcal{G}}(\beta)=a\|\beta\|_{1}+(1-a) \sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right| \quad \text { (Hoefling, 2010) }
$$

Examples

$$
\begin{aligned}
& J_{\mathcal{G}}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2} \quad \text { (Rapaport et al., 2007) } \\
& J_{\mathcal{G}}(\beta)=a\|\beta\|_{1}+(1-a) \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2} \quad \text { (Li and Li, 2008) } \\
& J_{\mathcal{G}}(\beta)=\sup _{\alpha \in \mathbb{R}^{p}: \forall i \sim j \alpha_{i}^{2}+\alpha_{i}^{2}<1} \alpha^{\top} \beta \quad \text { (Jacob et al., 2009) }
\end{aligned}
$$

$$
J_{\mathcal{G}}(\beta)=a\|\beta\|_{1}+(1-a) \sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right| \quad \text { (Hoefling, 2010) }
$$

From smoothness penalty to Laplacian

$$
\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}=\beta^{\top} L \beta
$$

where $L=D-A$ is the graph Laplacian.

$$
L=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda = } 0
$$

lambda $=0$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=0.76
$$

lambda $=0.12$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=0.83
$$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda = } 1.3
$$

lambda $=1$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=2.2
$$

lambda $=1.7$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=2.8
$$

lambda $=2.3$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=3.6
$$

lambda $=3$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=4.2
$$

lambda $=3.5$

From Laplacian to Fourier analysis: $L=U \wedge U^{\top}$

- Eigenvectors U of L form the Fourier basis:

$$
\hat{\beta}=U^{\top} \beta
$$

- Eigenvalues $\Lambda=\left(0=\lambda_{1} \leq \ldots \leq \lambda_{p}\right)$ represent the "frequencies" of the Fourier basis

$$
\text { Lambda }=6.3
$$

Smoothness in the Fourier domain

- Therefore, the smoothness penalty penalizes Fourier coefficients corresponding to high frequencies:

$$
J(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}=\beta^{\top} L \beta=\beta^{\top} U \wedge U^{\top} \beta=\hat{\beta}^{\top} \Lambda \hat{\beta}=\sum_{i=1}^{p} \lambda_{i} \hat{\beta}_{i}^{2}
$$

"the linear model mapped on the graph should have little energy at high frequency"

- Rapaport et al. (2007) extends this to more general penalties:

$$
J_{\phi}(\beta)=\sum_{i=1}^{p} \phi\left(\lambda_{i}\right) \hat{\beta}_{i}^{2} \quad \text { s.t. } \quad \beta=U \hat{\beta}
$$

for $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$non-decreasing.

Fourier vs wavelets

Fourier

Localized in frequency

Wavelets

Localized in frequency AND space

Wavelets on graphs

- A family of vectors $\left\{\Psi_{v, s}\right\} \subset \mathbb{R}^{p}$ where
- $v \in[1, p]$ is a vertex (space)
- $s \in \mathbb{R}^{+}$is a scale (frequency)
- In practice we choose a small number of scales $s_{1}<\ldots<s_{S}$
- This results in $p \times S$ vectors (overcomplete basis)

Example on graphs

Fig. 4. Spectral graph wavelets on Minnesota road graph, with $K=100, J=4$ scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-(f) wavelets, scales 1-4.

Example on graphs

(Hammond et al., 2011)

How to make the wavelet basis $\left\{\Psi_{v, t}\right\} ?$

- Hammond et al. (2011) propose spectral graph wavelets
- Formally, at scale $s>0$,

$$
\Psi_{s}=\left(\Psi_{1, s}|\ldots| \Psi_{p, s}\right)=U g(s \Lambda) U^{\top}
$$

where $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function that satisfies

- g is a band-pass filter (localization in frequency)
- g is smooth near 0 (this ensures localization in space)

Graph wavelet-based regularization

- Given a graph, compute a redundant set of $S \times p$ wavelet basis at different scales:

$$
B=\left(\Psi_{s_{1}}|\ldots| \Psi_{s_{s}}\right)
$$

- Take for penalty the atomic norm:

$$
J(\beta)=\min \left\{\sum_{i=1}^{S \times p}\left|c_{i}\right|: \beta=\sum_{i=1}^{S \times p} c_{i} B_{i}\right\}
$$

- $J(\beta)$ is small when β is a sum of a few atoms
- The atom $\Psi_{s, v}$ has weights in a neighborhood of v of "size" s

Summary: Fourier vs. wavelet penalty

$$
\min _{\beta \in \mathbb{R}^{p}} R(Y, X \beta)+\lambda J(\beta)
$$

- Fourier:

$$
J_{\phi}(\beta)=\|\phi(\Lambda) \hat{\beta}\|_{2}^{2} \quad \text { s.t. } \quad \beta=\boldsymbol{U} \hat{\beta}
$$

β will be smooth on the graph

- Wavelet

$$
J(\beta)=\min \left\{\|c\|_{1}: \beta=B c\right\}
$$

β will decompose as a sum of localized functions on the graph (pathways?)

Experiment

- Protein-protein interaction (PPI) network obtained from Human Protein Reference Database (HPRD).
- METABRIC breast cancer dataset
- $n=1,981$ breast cancer samples paired with survival information of patients.
- Expression data of a total of 24,771 genes available, among which $p=9,117$ genes are found with known interaction in HPRD.
- Benchmark study comparing 6 penalty functions:

Label	Penalty function $J(\beta)$	Network-based	Gene selection				
ridge	$\\|\beta\\|_{2}^{2}$						
lasso	$\\|\beta\\|_{1}^{2}$		\checkmark				
e-net	$a\\|\beta\\|_{1}+(1-a)\\|\beta\\|_{2}^{2}$		\checkmark				
lap	$\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}$	\checkmark					
laplasso	$a\\|\beta\\|_{1}+(1-a) \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}$	\checkmark	\checkmark				
wavelet	$\min _{\theta}\\|\theta\\|_{1}$ s.t. $\beta=\Psi \theta$	\checkmark	\checkmark				

Prediction performance

Boxplots on survival risk prediction performance evaluated by concordance index scores over 5 -fold cross-validation repeated 10 times of the METABRIC data.

Prediction performance

Label	Mean Cl scores (\pm SD)	Network-based	Gene selection
ridge	$0.636(\pm 0.018)$		
lap	$0.632(\pm 0.0193)$	\checkmark	
laplasso	$0.6312(\pm 0.0185)$	\checkmark	\checkmark
e-net	$0.6304(\pm 0.0183)$		\checkmark
wavelet	$0.6295(\pm 0.0198)$	\checkmark	\checkmark
lasso	$0.626(\pm 0.0177)$		\checkmark

Mean concordance index (CI) scores (\pm standard deviation) of survival risk prediction over 5 -fold cross-validation repeated 10 times of the METABRIC data. Methods are ordered by decreasing mean Cl scores.

Gene selection performance: Stability

Stability performance of gene selection related to breast cancer survival, estimated over 100 random experiments. The black dotted curve denotes random selection.

Gene selection performance: Connectivity

Connectivity performance of gene selection related to breast cancer survival, where special marks correspond to the number tuned by cross-validation. The black dotted curve denotes random selection.

Gene selection performance: Interpretability

Figure: Gene subnetworks related to breast cancer survival identified by regularization methods identified by the elastic net (10 genes connected out of 112 selected) or the Laplacian lasso (10 genes connected out of 100 selected).

Gene selection performance: Interpretability

Figure: Gene subnetworks related to breast cancer survival identified by regularization methods identified by network-based wavelet smoothing (82 genes connected out of 109 selected).

Conclusion

- Can biological networks help define a structure on high-dimensional omics data?
- Fourier-based penalties (smoothness, diffusion...) already exist
- Wavelets-based penalties decompose a signal over a basis
- localized in space
- localized in frequency
- Preliminary results on gene expression classification

Thanks

References

D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129-150, 2011. ISSN 1063-5203. doi: 10.1016/j.acha.2010.04.005.
H. Hoefling. A path algorithm for the Fused Lasso Signal Approximator. J. Comput. Graph. Stat., 19(4):984-1006, 2010. doi: 10.1198/jcgs.2010.09208. URL http://dx.doi.org/10.1198/jcgs.2010.09208.
L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 433-440, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.1553431. URL http://dx.doi.org/10.1145/1553374.1553431.
C. Li and H. Li. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24:1175-1182, May 2008. ISSN 1367-4811. doi: 10.1093/bioinformatics/btn081.
F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot, and J.-P. Vert. Classification of microarray data using gene networks. BMC Bioinformatics, 8:35, 2007. doi: 10.1186/1471-2105-8-35. URL http://dx.doi.org/10.1186/1471-2105-8-35.
R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1): 267-288, 1996. URL http://www.jstor.org/stable/2346178.

