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Typical problem

X ∈ Rn×p gene expression profile of each patient
Y ∈ Yn survival information of each patient
n = 102 ∼ 104

p = 2× 104

Goal: learn to predict Y from X
Difficult (n < p)



Regularized linear models

Fit a linear model β ∈ Rp by solving

min
β∈Rp

R(Y ,Xβ) + λJ(β) ,

where
R(Y ,Xβ) is an empirical risk to measures the fit to the training
data
J(β) is a penalty to control the complexity of the model
λ > 0 is a regularization parameter



Standard regularizations

min
β∈Rp

R(Y ,Xβ) + λJ(β)

where
Lasso: J(β) = ‖β‖1 for gene selection.
Ridge: J(β) = ‖β‖22 to address n� m.
Elastic net: J(β) = α‖β‖22 + (1− α)‖β‖1

Estimation returned by lasso (left) vs. ridge (right) Tibshirani (1996).



Network-based regularizations

G = (V, E) a graph of genes
JG(β) =?

β should be "smooth" on the graph?
Selected genes should be connected?



Examples

JG(β) =
∑
i∼j

(βi − βj)
2 (Rapaport et al., 2007)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

(βi − βj)
2 (Li and Li, 2008)

JG(β) = sup
α∈Rp : ∀i∼j α2

i +α2
j ≤1

α>β (Jacob et al., 2009)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

|βi − βj | (Hoefling, 2010)



Examples

JG(β) =
∑
i∼j

(βi − βj)
2 (Rapaport et al., 2007)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

(βi − βj)
2 (Li and Li, 2008)

JG(β) = sup
α∈Rp : ∀i∼j α2

i +α2
j ≤1

α>β (Jacob et al., 2009)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

|βi − βj | (Hoefling, 2010)



From smoothness penalty to Laplacian

∑
i∼j

(βi − βj)
2 = β>Lβ

where L = D − A is the graph Laplacian.
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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From Laplacian to Fourier analysis: L = UΛU>

Eigenvectors U of L form the Fourier basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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Smoothness in the Fourier domain

Therefore, the smoothness penalty penalizes Fourier coefficients
corresponding to high frequencies:

J(β) =
∑
i∼j

(βi − βj)
2 = β>Lβ = β>UΛU>β = β̂>Λβ̂ =

p∑
i=1

λi β̂
2
i

"the linear model mapped on the graph
should have little energy at high frequency"

Rapaport et al. (2007) extends this to more general penalties:

Jφ(β) =

p∑
i=1

φ(λi)β̂
2
i s.t. β = Uβ̂

for φ : R+ → R+ non-decreasing.



Fourier vs wavelets

Fourier

Localized in frequency

Wavelets

Localized in frequency AND
space



Wavelets on graphs

A family of vectors {Ψv ,s} ⊂ Rp where
v ∈ [1,p] is a vertex (space)
s ∈ R+ is a scale (frequency)

In practice we choose a small number of scales s1 < . . . < sS
This results in p × S vectors (overcomplete basis)

https://www.wolfram.com/mathematica/new-in-8/wavelet-analysis/
continuous-wavelet-transform-(cwt).html

https://www.wolfram.com/mathematica/new-in-8/wavelet-analysis/continuous-wavelet-transform-(cwt).html
https://www.wolfram.com/mathematica/new-in-8/wavelet-analysis/continuous-wavelet-transform-(cwt).html


Example on graphs
146 D.K. Hammond et al. / Appl. Comput. Harmon. Anal. 30 (2011) 129–150

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)–(f) wavelets, scales 1–4.

defined on both hemispheres. For future work we plan to investigate the use of these cortical graph wavelets for use in
regularization and denoising of functional MRI data.

A final interesting application for the spectral graph wavelet transform is the construction of wavelets on irregularly
shaped domains. As a representative example, consider that for some problems in physical oceanography one may need to
manipulate scalar data, such as water temperature or salinity, that is only defined on the surface of a given body of water.
In order to apply wavelet analysis for such data, one must adapt the transform to the potentially very complicated boundary
between land and water. The spectral wavelets handle the boundary implicitly and gracefully. As an illustration we examine
the spectral graph wavelets where the domain is determined by the surface of a lake.

For this example the lake domain is given as a mask defined on a regular grid. We construct the corresponding weighted
graph having vertices that are grid points inside the lake, and retaining only edges connecting neighboring grid points inside
the lake. We set all edge weights to unity. The corresponding graph Laplacian is thus exactly the 5-point stencil (13) for
approximating the continuous operator −∇2 on the interior of the domain; while at boundary points the graph Laplacian
is modified by the deletion of edges leaving the domain. We show an example wavelet on lake Geneva in Fig. 6. Shoreline
data was taken from the GSHHS database [56] and the lake mask was created on a 256 × 153 pixel grid using an azimuthal
equidistant projection, with a scale of 232 meters/pixel. The wavelet displayed is from the coarsest wavelet scale, using the
generating kernel described in Section 8.1 with parameters K = 100 and J = 5 scales.

For this type of domain derived by masking a regular grid, one may compare the wavelets with those obtained by simply
truncating the wavelets derived from a large regular grid. As the wavelets have compact support, the true and truncated
wavelets will coincide for wavelets located far from the irregular boundary. As can be seen in Fig. 6, however, they are
quite different for wavelets located near the irregular boundary. This comparison gives direct evidence for the ability of the
spectral graph wavelets to adapt gracefully and automatically to the arbitrarily shaped domain.

We remark that the regular sampling of data within the domain may be unrealistic for problems where data are collected
at irregularly placed sensor locations. The spectral graph wavelet transform could also be used in this case by constructing
a graph with vertices at the sensor locations, however we have not considered such an example here.

(Hammond et al., 2011)



Example on graphs
D.K. Hammond et al. / Appl. Comput. Harmon. Anal. 30 (2011) 129–150 147

Fig. 5. Spectral graph wavelets on cerebral cortex, with K = 50, J = 4 scales. (a) ROI at which wavelets are centered, (b) scaling function, (c)–(f) wavelets,
scales 1–4.

Fig. 6. Spectral graph wavelets on lake Geneva domain (spatial map (a), contour plot (c)); compared with truncated wavelets from graph corresponding to
complete mesh (spatial map (b), contour plot (d)). Note that the graph wavelets adapt to the geometry of the domain.

(Hammond et al., 2011)



How to make the wavelet basis {Ψv ,t}?

Hammond et al. (2011) propose spectral graph wavelets
Formally, at scale s > 0,

Ψs = (Ψ1,s | . . . |Ψp,s) = Ug(sΛ)U>

where g : R+ → R+ is a function that satisfies
g is a band-pass filter (localization in frequency)
g is smooth near 0 (this ensures localization in space)136 D.K. Hammond et al. / Appl. Comput. Harmon. Anal. 30 (2011) 129–150

Fig. 1. Scaling function h(λ) (blue curve), wavelet generating kernels g(t jλ), and sum of squares G (black curve), for J = 5 scales, λmax = 10, K = 20. Details
in Section 8.1. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

5.1. Continuous SGWT inverse

In order for a particular transform to be useful for signal processing, and not simply signal analysis, it must be possible
to reconstruct a signal corresponding to a given set of transform coefficients. We will show that the spectral graph wavelet
transform admits an inverse formula analogous to (4) for the continuous wavelet transform.

Intuitively, the wavelet coefficient W f (t,n) provides a measure of “how much of” the wavelet ψt,n is present in the
signal f . This suggests that the original signal may be recovered by summing the wavelets ψt,n multiplied by each wavelet
coefficient W f (t,n). The reconstruction formula below shows that this is indeed the case, subject to a non-constant weight
dt/t .

Lemma 5.1. If the SGWT kernel g satisfies the admissibility condition

∞∫

0

g2(x)
x

dx = C g < ∞ (27)

and g(0) = 0, then

1
C g

N∑

n=1

∞∫

0

W f (t,n)ψt,n(m)
dt
t

= f #(m) (28)

where f # = f − ⟨χ0, f ⟩χ0 . In particular, the complete reconstruction is then given by f = f # + f̂ (0)χ0 .

Proof. Using (24) and (26) to express ψt,n and W f (t,n) in the graph Fourier basis, the l.h.s. of the above becomes

1
C g

∞∫

0

1
t

∑

n

(∑

ℓ

g(tλℓ)χℓ(n) f̂ (ℓ)
∑

ℓ′
g(tλℓ′)χ∗

ℓ′(n)χℓ′(m)

)
dt

= 1
C g

∞∫

0

1
t

(∑

ℓ,ℓ′
g(tλℓ′)g(tλℓ) f̂ (ℓ)χℓ′(m)

∑

n

χ∗
ℓ′(n)χℓ(n)

)
dt (29)

The orthonormality of the χℓ implies
∑

n χ∗
ℓ′ (n)χℓ(n) = δℓ,ℓ′ , inserting this above and summing over ℓ′ gives

= 1
C g

∑

ℓ

( ∞∫

0

g2(tλℓ)

t
dt

)

f̂ (ℓ)χℓ(m) (30)

If g satisfies the admissibility condition, then the substitution u = tλℓ shows that
∫ g2(tλℓ)

t dt = C g independent of ℓ, except
for when λℓ = 0 at ℓ = 0 when the integral is zero. The expression (30) can be seen as the inverse Fourier transform
evaluated at vertex m, where the ℓ = 0 term is omitted. This omitted term is exactly equal to ⟨χ0, f ⟩χ0 = f̂ (0)χ0, which
proves the desired result. ✷

Note that for the non-normalized Laplacian, χ0 is constant on every vertex and f # above corresponds to removing the
mean of f . Formula (28) shows that the mean of f may not be recovered from the zero-mean wavelets. The situation is
different from the analogous reconstruction formula (4) for the CWT, which shows the somewhat counterintuitive result



Graph wavelet-based regularization

Given a graph, compute a redundant set of S × p wavelet basis at
different scales:

B = (Ψs1 | . . . |ΨsS )

Take for penalty the atomic norm:

J(β) = min


S×p∑
i=1

|ci | : β =

S×p∑
i=1

ciBi


J(β) is small when β is a sum of a few atoms
The atom Ψs,v has weights in a neighborhood of v of "size" s



Summary: Fourier vs. wavelet penalty

min
β∈Rp

R(Y ,Xβ) + λJ(β)

Fourier:
Jφ(β) = ‖φ(Λ)β̂ ‖22 s.t. β = Uβ̂

β will be smooth on the graph

Wavelet
J(β) = min {‖ c ‖1 : β = Bc}

β will decompose as a sum of localized functions on the graph
(pathways?)



Experiment

Protein-protein interaction (PPI) network obtained from Human
Protein Reference Database (HPRD).
METABRIC breast cancer dataset

- n = 1,981 breast cancer samples paired with survival information
of patients.

- Expression data of a total of 24,771 genes available, among which
p = 9,117 genes are found with known interaction in HPRD.

Benchmark study comparing 6 penalty functions:

Label Penalty function J(β) Network-based Gene selection
ridge ‖β‖2

2
lasso ‖β‖1 X
e-net a‖β‖1 + (1− a)‖β‖2

2 X
lap

∑
i∼j (βi − βj )

2 X
laplasso a‖β‖1 + (1− a)

∑
i∼j (βi − βj )

2 X X
wavelet minθ ‖θ‖1 s.t. β = Ψθ X X



Prediction performance
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Boxplots on survival risk prediction performance evaluated by concordance index scores over

5-fold cross-validation repeated 10 times of the METABRIC data.



Prediction performance

Label Mean CI scores (± SD) Network-based Gene selection
ridge 0.636 (±0.018)
lap 0.632 (±0.0193) X

laplasso 0.6312 (±0.0185) X X
e-net 0.6304 (±0.0183) X

wavelet 0.6295 (±0.0198) X X
lasso 0.626 (±0.0177) X

Mean concordance index (CI) scores (± standard deviation) of survival risk prediction over 5-fold

cross-validation repeated 10 times of the METABRIC data. Methods are ordered by decreasing

mean CI scores.



Gene selection performance: Stability
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random experiments. The black dotted curve denotes random selection.



Gene selection performance: Connectivity
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Gene selection performance: Interpretability

Figure: Gene subnetworks related to breast cancer survival identified by regularization
methods identified by the elastic net (10 genes connected out of 112 selected) or the Laplacian
lasso (10 genes connected out of 100 selected).



Gene selection performance: Interpretability

Figure: Gene subnetworks related to breast cancer survival identified by regularization methods
identified by network-based wavelet smoothing (82 genes connected out of 109 selected).



Conclusion

Can biological networks help define a structure on
high-dimensional omics data?
Fourier-based penalties (smoothness, diffusion...) already exist
Wavelets-based penalties decompose a signal over a basis

localized in space
localized in frequency

Preliminary results on gene expression classification
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