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Mathematical model

Patients with VS without relapse in 5 years
n (=19) patients >> p (=2) markers
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Patients with VS without relapse in 5 years
n (=19) patients >> p (=2) markers



Real data: n << p

Gene expression

Somatic mutations

n = 102 ∼ 104 (patients)
p = 104 ∼ 107 (genes, mutations, copy number, ...)
Data of various nature (continuous, discrete, structured, ...)
Data of variable quality (technical/batch variations, noise, ...)



Consequence: limited accuracy

Breast cancer prognosis competition, n = 2000 (Bilal et al., 2013)

C: 16 standard clinical data (age, tumor size, ...)
M: 80k molecular features (gene expression, DNA copy number)



Consequence: unstable biomarker selection

70	genes	(Nature,	2002)	 76	genes	(Lancet,	2005)	

3	genes	in	common	

van ’t Veer et al. (2002); Wang et al. (2005)



Some research directions

Regularize and incorporate prior knowledge
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Find a better representation



Outline

1 Regularize

2 Change representation
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2 Change representation



Typical problem

n samples (patients), p features (genes)
X ∈ Rn×p gene expression profile of each patient
Y ∈ Yn survival information of each patient
Fit a linear model for a sample x ∈ Rp:

f (x) = β>x =

p∑
i=1

βixi

Standard methods (least squares or logistic regression) won’t
work because n < p



Regularized linear models

In high dimension, estimate β by solving

min
β∈Rp

R(Y ,Xβ) + λJ(β) ,

where
R(Y ,Xβ) is an empirical risk to measures the fit to the training
data
J(β) is a penalty to control the complexity of the model
λ > 0 is a regularization parameter



Standard regularizations

min
β∈Rp

R(Y ,Xβ) + λJ(β)

where
Lasso: J(β) = ‖β‖1 for gene selection.
Ridge: J(β) = ‖β‖22 to address n� m.
Elastic net: J(β) = α‖β‖22 + (1− α)‖β‖1

Estimation returned by lasso (left) vs. ridge (right) Tibshirani (1996).



Which regularization is the best?

Feature selection (lasso, t-tests, ...) is popular, it leads to a limited
set of genes that form a molecular signatures
Ridge is less interpretable but often leads to better performance...
e.g., breast cancer prognosis (n = 286):184 Computational Systems Biology of Cancer
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FIGURE 6.4 Influence of signature size on breast cancer prognosis per-
formance. A regularised LR classifier using a signature of varying size is trained
on the Wang expression dataset to predict relapse within 5 years. The genes in the
signatures are selected either randomly, or by decreasing significance according to
a t-test. The performance is estimated by 5-fold cross-validation, averaged over 10
repeats. In this example, it is better to keep all genes to train the classifier.

notion of genomic grade to quantify tumour di↵erentiation (Sotiriou et al.,
2003; Loi et al., 2007). In addition to tumour di↵erentiation assessment, this
genomic grade was shown to be prognostic. Several prognostic molecular pre-
dictors have also been proposed, including the 76-gene MammaPrint R� sig-
nature developed at the Netherlands Cancer Institute in Amsterdam (van’t
Veer et al., 2002) and the 76-gene Rotterdam signature of Wang et al. (2005).
Investigators from the University of Texas M. D. Anderson Cancer Center
developed DLD30, a 30-gene signature to predict the response of a tumour
to preoperative chemotherapies (Hess et al., 2006). The Oncotype DX R� assay
combines the expression of 21 genes to evaluate the risk of relapse and the
benefits of chemotherapy for patients with early-stage, lymph node-negative,
ER+/HER2- breast cancers (Paik et al., 2006; Paik, 2007). Several of these
molecular predictors have reached the level of clinical trials, and are now being
tested on large cohorts of patients. We can already foresee their routine use
in the clinics within few years.

6.3.6 Pitfalls and challenges in biomarker discovery

Although an attractive strategy to improve the performance of predictive
modelling in high-dimension and simultaneously identify biologically relevant
markers, the automatic data-driven identification of new markers remains
challenging for several reasons.



Adding prior knowledge: network-based
regularizations

G = (V, E) a graph of genes (PPI, metabolic, signaling, regulatory
network...)
Prior knowledge:

β should be "smooth" on the graph?
Selected genes should be connected?



Examples of network-based regularizations

JG(β) =
∑
i∼j

(βi − βj)
2 (Rapaport et al., 2007)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

(βi − βj)
2 (Li and Li, 2008)

JG(β) = sup
α∈Rp : ∀i∼j α2

i +α
2
j ≤1

α>β (Jacob et al., 2009)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

|βi − βj | (Hoefling, 2010)



Gene selection with the graph lasso

Ω(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β

Jacob et al. (2009)



BC prognosis: Lasso signature (accuracy 0.61)

Jacob et al. (2009)



BC prognosis: Graph Lasso signature (accuracy 0.64)

Jacob et al. (2009)



Smoothness regularization and Fourier transform

"Connected genes have similar weights" (Rapaport et al., 2007; Li
and Li, 2008)

JG(β) =
∑
i∼j

(βi − βj)
2

No feature selection
Reinterpretation in the Fourier domain (Rapaport et al., 2007):

∑
i∼j

(βi − βj)
2 =

p∑
i=1

λi β̂
2
i

where
β̂i is the i-th Fourier coefficient of β
λi is the i-th frequency

"β has little energy at high frequency" and is therefore smooth on
the graph



Smoothness regularization and Fourier transform

"Connected genes have similar weights" (Rapaport et al., 2007; Li
and Li, 2008)

JG(β) =
∑
i∼j

(βi − βj)
2

No feature selection
Reinterpretation in the Fourier domain (Rapaport et al., 2007):

∑
i∼j

(βi − βj)
2 =

p∑
i=1

λi β̂
2
i

where
β̂i is the i-th Fourier coefficient of β
λi is the i-th frequency

"β has little energy at high frequency" and is therefore smooth on
the graph



Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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Smoothness in the Fourier domain: extensions

Rapaport et al. (2007) extends

∑
i∼j

(βi − βj)
2 =

p∑
i=1

λi β̂
2
i

to
p∑

i=1

φ(λi)β̂
2
i

for φ : R+ → R+ non-decreasing.
Example: φ(λ) = exp(−γλ) linked to the diffusion kernel on the
graph.



Classifiers
Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8



Fourier vs wavelets

Fourier

Localized in frequency

Wavelets

Localized in frequency AND
space



From Fourier to wavelets on graphs
D.K. Hammond et al. / Appl. Comput. Harmon. Anal. 30 (2011) 129–150 147

Fig. 5. Spectral graph wavelets on cerebral cortex, with K = 50, J = 4 scales. (a) ROI at which wavelets are centered, (b) scaling function, (c)–(f) wavelets,
scales 1–4.

Fig. 6. Spectral graph wavelets on lake Geneva domain (spatial map (a), contour plot (c)); compared with truncated wavelets from graph corresponding to
complete mesh (spatial map (b), contour plot (d)). Note that the graph wavelets adapt to the geometry of the domain.

(Hammond et al., 2011)



BC prognosis signature: Stability

10

1000

10 1000
number of selected genes

nu
m

be
r 

of
 c

om
m

on
ly

 s
el

ec
te

d 
ge

ne
s

label
lasso

e−net

laplasso

wavelet

Stability performance of gene selection related to breast cancer survival, estimated over 100

random experiments. The black dotted curve denotes random selection. From Jiao and Vert (to

appear)



BC prognosis signature: Connectivity
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marks correspond to the number tuned by cross-validation. The black dotted curve denotes

random selection. From Jiao and Vert (to appear)



Regularization: summary

Regularization is needed in high dimension
While gene selection is popular, alternatives exist which often
work better
Different strategies to include prior knowledge

structured feature selection (variants of lasso)
smoothness (in the Fourier domain)
wavelet decomposition (frequency/localization)



Outline

1 Regularize

2 Change representation



From raw data to X

Between-sample variability: batch effect, drift over time, ...
Typical pre-processing: Quantile normalization per sample
Only the relative ordering of features within each sample is used



Learning with permutations

Represent each sample x ∈ Rp by the ranks of genes σ ∈ Sp
The symmetric group Sp is the set of permutations of {1, . . . ,p}



Example

Represent x ∈ Rp by Πx ∈ Rp×p with

[Πx ]ij =

{
1 if xj has rank i ,
0 otherwise.



Example

Learn a linear model

f (x) =< M,Πx >Frobenius= trace(M>Π(x))

Constrain rank(M)=1
This is equivalent to quantile normalization, where the target
quantile function is jointly optimized: we call is supervised quantile
normalization, a.k.a. SUQUAN (Le Morvan and Vert, 2017)



Proof: from Πx to SUQUAN

QN with target quantile f ∈ Rp is Πx f .
Learning linear model f (u) = w>u + b on QN-transformed data
while optimizing f is:

min
w ,b,f

{
1
n

n∑
i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
n

n∑
i=1

`
(

w>Πxi f + b
)

+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
n

n∑
i=1

`
(
< wf>,Πxi >Fro +b

)
+ λΩ(w) + γΩ2(f )

}

A particular linear model to estimate a rank-1 matrix M = wf>

Non-convex
Local optimum found by alternatively optimizing f and w



Results: gene expression data

LOGISTIC REGRESSION SUQUAN
RAW RMA CAUCHY EXP. UNIF. GAUS. MEDIAN SVD BND SPAV

GSE1456 65.94 68.73 59.56 68.86 68.72 69.00 69.06 57.60 71.44 69.60
GSE2034 74.52 75.42 61.91 74.53 75.22 76.45 74.92 52.61 70.50 76.11
GSE2990 57.01 60.43 54.72 61.25 56.25 58.66 59.72 52.51 59.22 59.94
GSE4922 58.52 58.86 55.24 58.81 55.66 60.01 59.18 52.39 61.82 61.41
AVERAGE 64.00 65.86 57.86 65.86 63.96 66.03 65.72 53.78 65.75 66.77
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Estimated quantile function: iteration=0



Estimated quantile function: iteration=1



Estimated quantile function: iteration=2



Another representation of permutations

Φi,j(x) =

{
1 if xi ≤ xj ,

0 otherwise.



Link with Kendall’s τ (Jiao and Vert, 2017)

Useful in practice (kernel methods)



Applications
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Somatic mutations in cancer

Stratton et al. (2009)



Large-scale efforts to collect somatic mutations

3,378 samples with survival information from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



NetNorm Overview (Le Morvan et al., 2016)

Replace x ∈ {0,1}p by Phi(x) ∈ {0,1}p, using a gene network as
prior knowledge
Enforce quantile normalization, i.e., after Netnorm, all patients
Φ(x) have the same number of (pseudo-)mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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NetNorm detail (k=4)

1 Add mutations for patients with few (less than k ) mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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2 Remove mutations for patients for many (more than k ) mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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In practice, k is a free parameter optimized on the training set, typically a few 100’s.



Performance on survival prediction
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Summary: change representation

SUQUAN	Kendall	

A good representation is worth a thousand ML algorithms
Permutations offer an interesting setting

robust to various sources of noise
amenable to machine learning (SUQUAN, Kendall kernel)

Learning representations is a hot topic (deep learning...)



Thanks

Point&d’étape&ITI&/&20&FEVRIER&–&1er&JUILLET&2014&!
C.SURIAM!–!F.LEQUEUX!

! ! !

!
POINT&D’ETAPE&20&FEVRIER&–&1er&JUILLET&2014&

!

1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!
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