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Joint work with

Marine Le Morvan Andrei Zinovyev



Somatic mutations in cancer

Stratton et al. (2009)



Large-scale efforts to collect somatic mutations

3,378 samples with survival information from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



Survival prediction from raw mutation profiles

Each patient is a binary vector: each gene is mutated (1) or not (0)
Silent mutations are removed
Survival model estimated with sparse survival SVM
Results on 5-fold cross-validation repeated 4 times



Approach: change representation?

Can we replace

x ∈ {0,1}p with p very large, very sparse

by a representation with more information shared between samples

Φ(x) ∈ H

that would allow better supervised and unsupervised classification?



NetNorm Overview (Le Morvan et al., 2017)
Take

H =

{
x ∈ {0,1}p :

p∑
i=1

xi = K

}
and use a gene network to transform x to φ(x) ∈ H by
adding/removing mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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NetNorm detail (k=4)

1 Add mutations for patients with few (less than K ) mutations

2 Results

2.1 Overview of NetNorM
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2 Remove mutations for patients for many (more than K ) mutations

2 Results

2.1 Overview of NetNorM

a

Number of mutated 
neighbours

Degree of 
mutated genes

Patient with less than k mutations

Patient with more than k mutations

hubs

Raw binary mutation matrix

NetNorM binary mutation matrix

pa
tie

nt
s

genes

Patient stratification 
Survival prediction

patient total number 
of mutations

Gene-gene interaction network

mutated genes
Application of NetNorM with k=4

b

Number of mutated 
neighbours

Degree of mutated 
genes

Patient with less than k mutations

Patient with more than k mutations

hubs

Raw binary mutation matrix

NetNorM binary mutation matrix

pa
tie

nt
s

genes

Patient stratification 
Survival prediction

patient total number 
of mutations

Gene-gene interaction network

mutated genes

Application of NetNorM with k=4

proxy mutation

Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
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In practice, K is a free parameter optimized on the training set, typically a few 100’s.



Related work (Hofree et al., 2013)
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Many forms of cancer have multiple subtypes with different 
causes and clinical outcomes. Somatic tumor genome sequences 
provide a rich new source of data for uncovering these 
subtypes but have proven difficult to compare, as two tumors 
rarely share the same mutations. Here we introduce network-
based stratification (NBS), a method to integrate somatic 
tumor genomes with gene networks. This approach allows for 
stratification of cancer into informative subtypes by clustering 
together patients with mutations in similar network regions. 
We demonstrate NBS in ovarian, uterine and lung cancer cohorts 
from The Cancer Genome Atlas. For each tissue, NBS identifies 
subtypes that are predictive of clinical outcomes such as 
patient survival, response to therapy or tumor histology. We 
identify network regions characteristic of each subtype and 
show how mutation-derived subtypes can be used to train  
an mRNA expression signature, which provides similar 
information in the absence of DNA sequence.

Cancer is a disease that is not only complex, i.e., driven by a com-
bination of genes, but also wildly heterogeneous, in that gene 
combinations can vary greatly between patients. To gain a bet-
ter understanding of these complexities, researchers involved 
in projects such as The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC) are systemati-
cally profiling thousands of tumors at multiple layers of genome-
scale information, including mRNA and microRNA expression, 
DNA copy number and methylation, and DNA sequence1–3. There 
is now a strong need for informatics methods that can integrate and 
interpret genome-scale molecular information to provide insight 
into the molecular processes driving tumor progression. Such 
methods are also of pressing need in the clinic, where the impact 
of genome-scale tumor profiling has been limited by the inability 
to derive clinically relevant conclusions from the data4,5.

One of the fundamental goals of cancer informatics is tumor 
stratification, whereby a heterogeneous population of tumors is 
divided into clinically and biologically meaningful subtypes as 
determined by similarity of molecular profiles. Most prior attempts 
to stratify tumors with molecular profiles have used mRNA expres-
sion data2,6–9, resulting in the discovery of informative subtypes 
in diseases such as glioblastoma and breast cancer. On the other 
hand, in TCGA cohorts including colorectal adenocarcinoma and 

Network-based stratification of tumor mutations
Matan Hofree1, John P Shen2, Hannah Carter2, Andrew Gross3 & Trey Ideker1–3

small-cell lung cancer, subtypes derived from expression profiles do 
not correlate with any clinical phenotype including patient survival 
and response to chemotherapy2,10. These results might be due to 
limitations of expression-based analysis11 such as issues with RNA 
sample quality, lack of reproducibility between biological replicates 
and ample opportunities for overfitting of data.

A promising new source of data for tumor stratification is the 
somatic mutation profile, in which high-throughput sequencing 
is used to compare the genome or exome of a patient’s tumor 
to that of the germ line to identify mutations that have become 
enriched in the tumor cell population12. As this set of mutations 
is presumed to contain the causal drivers of tumor progression13, 
similarities and differences in mutations across patients could 
provide invaluable information for stratification. Although indi-
vidual mutations in cancer genes have long been used to stratify 
patients14–17, stratification based on the entire mutation profile 
has been more challenging. Somatic mutations are fundamen-
tally unlike other data types such as expression or methylation, in 
which nearly all genes or markers are assigned a quantitative value 
in every patient. Instead, somatic mutation profiles are extremely 
sparse, with typically fewer than 100 mutated bases in an entire 
exome (Supplementary Fig. 1). They are also remarkably het-
erogeneous, such that it is very common for clinically identical 
patients to share no more than a single mutation2,18,19.

Here we report that these problems can be largely overcome 
by integrating somatic mutation profiles with knowledge of 
the molecular network architecture of human cells. It is widely 
appreciated that cancer is a disease not of individual mutations, 
nor of genes, but of combinations of genes acting in molecular 
networks corresponding to hallmark processes such as cell pro-
liferation and apoptosis20,21. We postulated that, although two 
tumors may not have any mutations in common, they may share 
the networks affected by these mutations (as per Waddington’s 
original theory of ‘genetic canalization’22). Although current  
cancer pathway maps are incomplete, much relevant information 
is available in public databases of human protein-protein, func-
tional and pathway interactions. An increasing number of studies 
have successfully integrated these network databases with tumor 
molecular profiles to map the molecular pathways of cancer23–27.  
Here we focus on the orthogonal problem of using network 
knowledge to stratify a cohort into meaningful subsets. Using this  
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

RESULTS
Overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 
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Results: survival prediction
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NetNorM and NSQN benefit from biological
information in the gene network

Comparison with 10 randomly permuted networks:
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Selected genes represent "true" or "proxy" mutations
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Proxy mutations encode both total number of
mutations and local mutational burden

a b

c

Figure 4 – Analysis of predictive genes. (a) Comparison of survival prediction performances according
to patients’ mutation rate for LUAD. Three di↵erent representations of the mutations are used to perform
survival prediction using a ranking SVM: raw (the raw binary mutation data), NSQN (network smoothing
with quantile normalisation) and NetNorM. NSQN and NetNorM are applied with Pathway Commons as
gene-gene interaction network. Performances for half of the patients with fewer (resp. more) mutations are
derived from the predictions made using the whole dataset. (b) Scatter plot of the correlation between the
total number of mutations across patients and the number of mutated neighbours of a gene across patients
(x-axis) against the degree of a gene (y-axis). This plot was generated using the raw mutation data for LUAD
and Pathway Commons. (c) Scatter plot of the total number of mutations in a patient (x-axis) against the
number of mutated neighbours of KHDRBS1 in a patient (y-axis). Only patients with less that kmed = 295
mutations are shown, where kmed is the median value of k learned across cross-validation folds. Red (resp.
blue) indicate patients mutated (resp. non mutated) in KHDRBS1 after processing with NetNorM using
k = kmed. The black line was fit by linear regression and by definition indicates the expected number of
mutated neighbours of KHDRBS1 given the mutation rate of a patient. The plot was generated using the
LUAD dataset with Pathway Commons.
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KHDRBS1: a member of the K homology domain-containing, RNA-binding, signal transduction-associated protein family



Adding good old clinical factors

ra
w

N
S
Q

N
N

e
tN

o
rM

ra
w

 +
 c

lin
N

S
Q

N
 +

 c
lin

N
e
tN

o
rM

 +
 c

lin cl
in

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

C
o
n
co

rd
a
n
ce

 I
n
d
e
x

LUAD

ra
w

N
S
Q

N
N

e
tN

o
rM

ra
w

 +
 c

lin
N

S
Q

N
 +

 c
lin

N
e
tN

o
rM

 +
 c

lin cl
in

SKCM

Combination by averaging predictions



Performance on unsupervised patient stratification
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Conclusion

Somatic mutation profiles are challenging because
Little overlap between patients
Large variability in number of mutations

Network smoothing / local averaging sometimes helps
but with current methods, looking at the direct neighbors is good
enough

Normalizing for total number of mutations is important
through QN or NetNorm, for example
this is not for biological reasons, but for mathematical reasons
Much room for improvement to find a good representation Φ(x)

Try it!
https://github.com/marineLM/NetNorM

https://github.com/marineLM/NetNorM


Thanks

Point&d’étape&ITI&/&20&FEVRIER&–&1er&JUILLET&2014&!
C.SURIAM!–!F.LEQUEUX!

! ! !

!
POINT&D’ETAPE&20&FEVRIER&–&1er&JUILLET&2014&

!

1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!
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Patient stratification (unsupervised) from raw mutation
profiles

X Non-Negative matrix
factorisation (NMF)

X Desired behaviour:

X Observed behaviour:

Patients share very few mutated genes!



QN matters...

Both NetNorm and NSQN transforms follow a 2-step a approach:
1 Smooth the raw data onto the gene network (NS)
2 Quantile normalize the smoothed profile (QN)



QN after network smoothing


