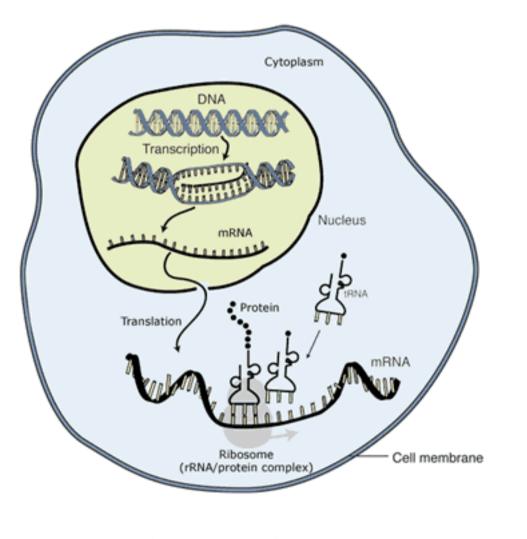
Some challenges with single-cell gene expression data

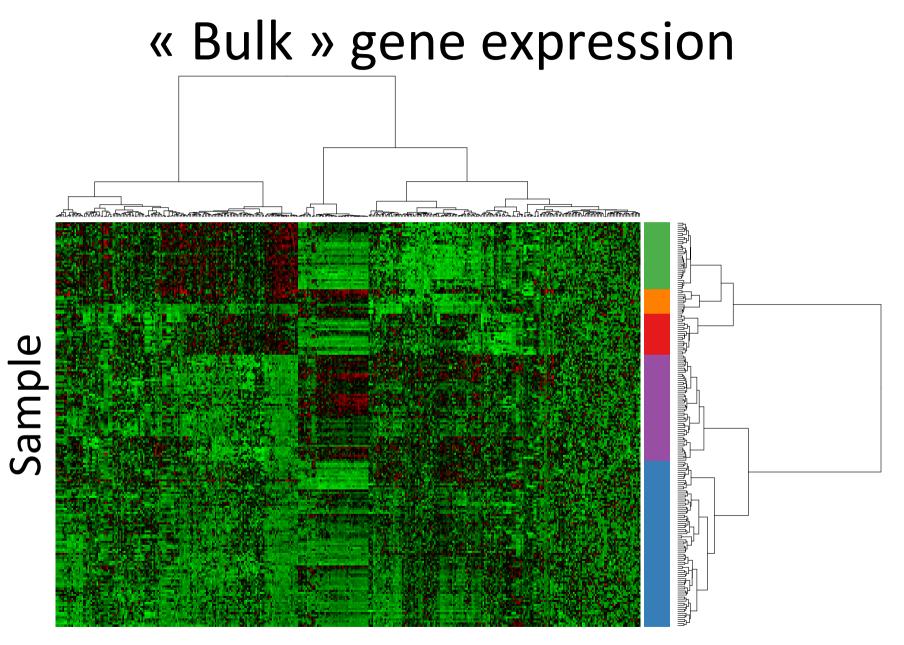
Jean-Philippe Vert

Gene expresion



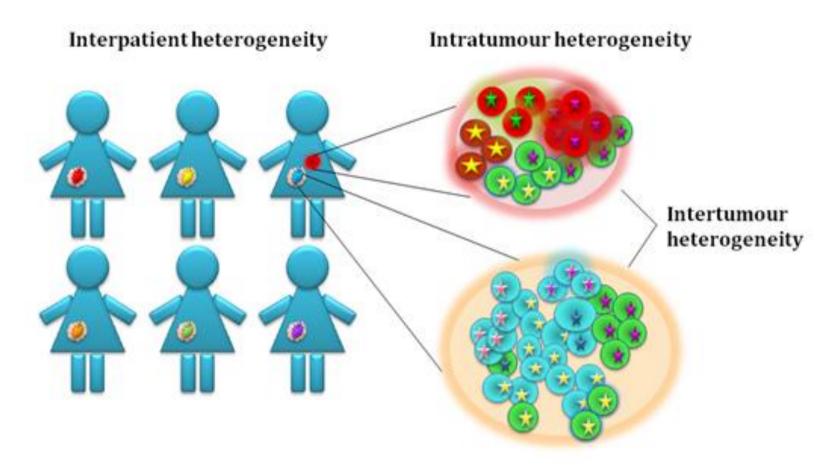
~20k genes in human genome

Image adapted from: National Human Genome Research Institute.



Gene

Each sample can be a complex mixture of different cells

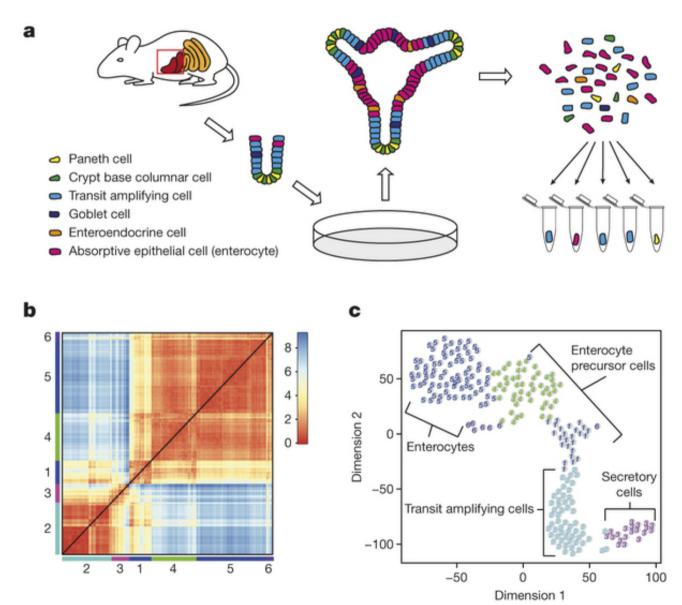


From Oslo University Hospital web page

« Bulk » vs « single-cell »

Inspired from slides of A. Regev

Single-cell RNA-seq

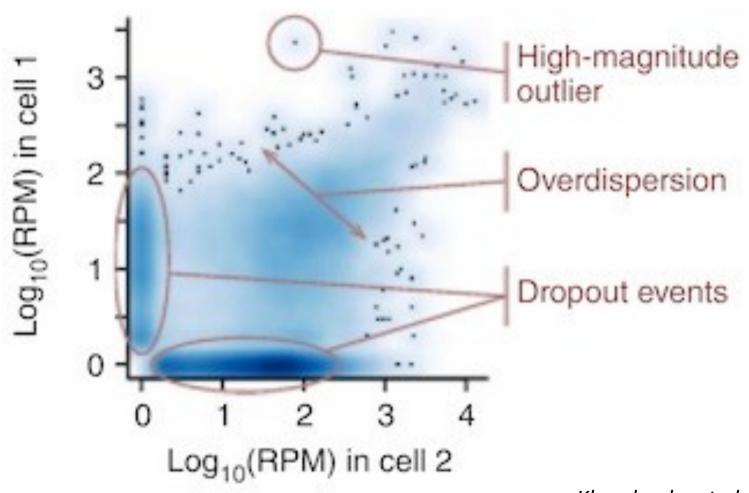


(Grün et al 2015)

The data

	SRR1275356	SRR1274090	SRR1275251	SRR1275287	SRR1275364	SRR1275269	SRR1275263	SRR1275242
A1BG	0	0	0	0	0	0	0	0
A1BG-AS1	0	0	0	0	0	0	0	0
A1CF	0	0	0	0	0	0	0	0
A2M	0	0	0	31	0	46	0	0
A2M-AS1	0	0	0	0	0	0	0	0
A2ML1	0	0	0	0	0	0	0	0
A2MP1	0	0	8	0	0	0	1	0
A3GALT2	0	0	0	0	0	0	0	0
A4GALT	0	0	0	0	0	0	0	0
A4GNT	0	0	0	0	0	0	0	0
AA06	0	0	0	0	0	0	0	0
AAAS	0	0	35	0	0	0	0	0
AACS	1	0	1	312	0	0	1	0
AACSP1	0	0	0	0	0	0	0	0
AADAC	0	0	0	0	0	0	0	0

Dropout, overdispersion...



Kharchenko et al., 2014

HOME

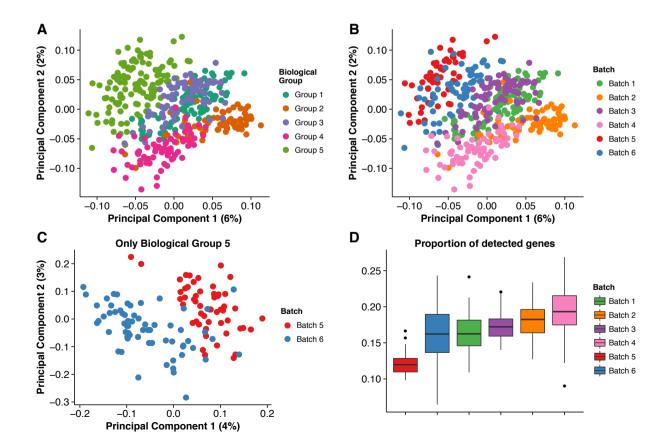
Search

New Results

Missing Data and Technical Variability in Single-Cell RNA- Sequencing Experiments

Istephanie C Hicks, IP F. William Townes, IP Mingxiang Teng, IP Rafael A Irizarry doi: https://doi.org/10.1101/025528

Batch effects, normalization...

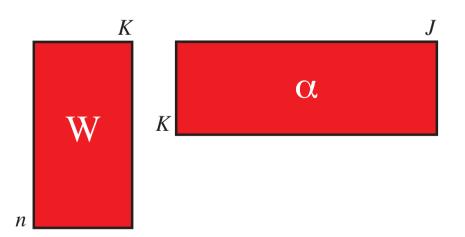


Some challenges

- Normalize for total count per cell?
- Remove unwanted variations? (batches, cell cycle, GC content, ...)
- Distances between transcription profiles?
- Clustering / Visualization?
- Differential expression?
- Supervised classification?
- ..

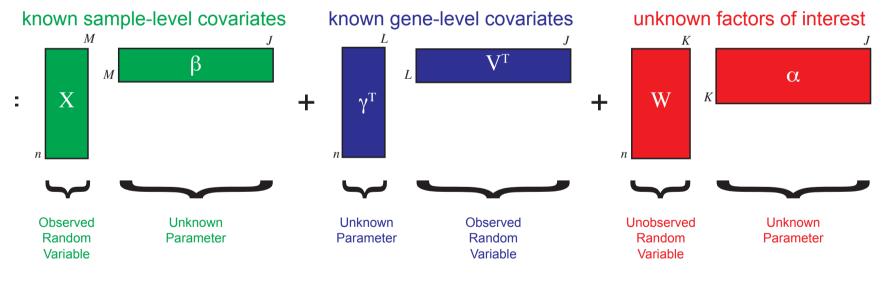
Dimension reduction (PCA/SVD)

$E[Y] = W\alpha$



Including known covariates (RUV)

 $E|Y| = X\beta + V\gamma + W\alpha$



X intercept acts as a scaling factor

V intercept acts as a normalization factor

Jacob et al. (2013), Gagnon-Bartsch et al. (2013), Risso et al. (2014)

How to adapt PCA/SVD/RUV to scRNA-seq data?

$E[Y] = X\beta + V\gamma + W\alpha$

- discrete, non-Gaussian data
- dropouts

ARTICLE

DOI: 10.1038/s41467-017-02554-5

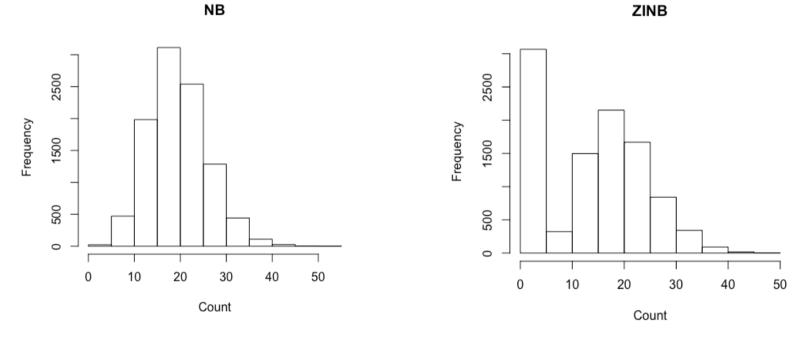
OPEN

A general and flexible method for signal extraction from single-cell RNA-seq data

Davide Risso 1, Fanny Perraudeau², Svetlana Gribkova³, Sandrine Dudoit^{2,4} & Jean-Philippe Vert ^{5,6,7,8}

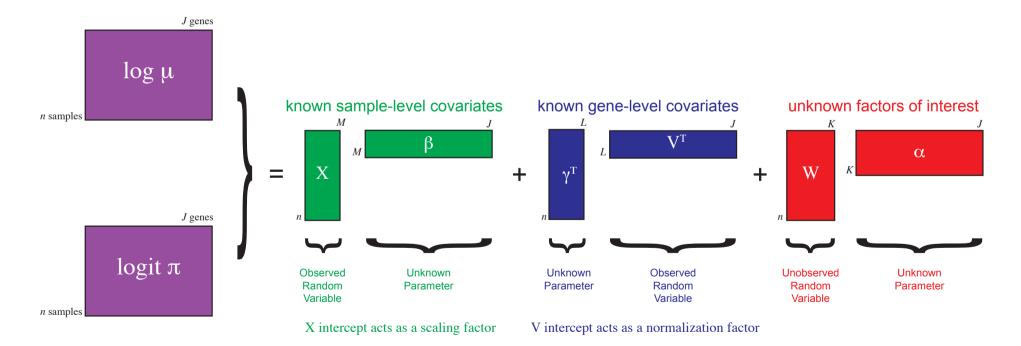
ZINB distribution to model a count « Zero-Inflated Negative Binomial »

$$f_{NB}(y;\mu,\theta) = \frac{\Gamma(y+\theta)}{\Gamma(y+1)\Gamma(\theta)} \left(\frac{\theta}{\theta+\mu}\right)^{\theta} \left(\frac{\mu}{\mu+\theta}\right)^{y}, \quad \forall y \in \mathbb{N}.$$



 $f_{ZINB}(y;\mu,\theta,\pi) = \pi \delta_0(y) + (1-\pi) f_{NB}(y;\mu,\theta), \quad \forall y \in \mathbb{N},$

$$\begin{aligned} \mathsf{ZINB-WaVE model} \\ \ln(\mu_{ij}) &= \left(X\beta_{\mu} + (V\gamma_{\mu})^{\top} + W\alpha_{\mu} + O_{\mu} \right)_{ij} \\ \log it(\pi_{ij}) &= \left(X\beta_{\pi} + (V\gamma_{\pi})^{\top} + W\alpha_{\pi} + O_{\pi} \right)_{ij} \\ \ln(\theta_{ij}) &= \zeta_j , \end{aligned}$$



Usage

- X:
 - (1,...,1) for gene-specific offset
 - Batch effects, quality control
 - Experimental design
- V
 - (1,...,1) for cell-specific offset (size factor)– GC content, ...
- W,alpha: cell cycle, clusters, ... (like PCA)

Fitting the model

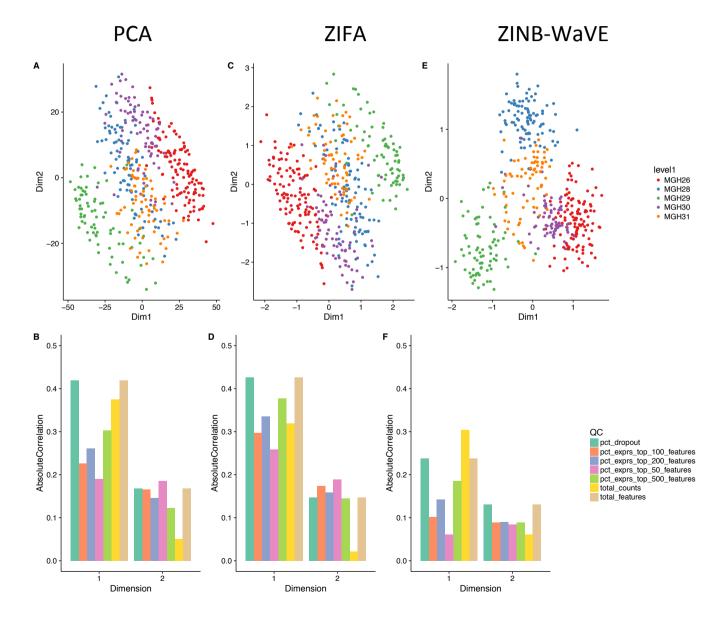
 $\max_{\beta,\gamma,W,\alpha,\zeta} \left\{ \ell(\beta,\gamma,W,\alpha,\zeta) - \operatorname{Pen}(\beta,\gamma,W,\alpha,\zeta) \right\}$

$$\ell(\beta,\gamma,W,\alpha,\zeta) = \sum_{i=1}^{n} \sum_{j=1}^{J} \ln f_{ZINB}(Y_{ij};\mu_{ij},\theta_{ij},\pi_{ij})$$

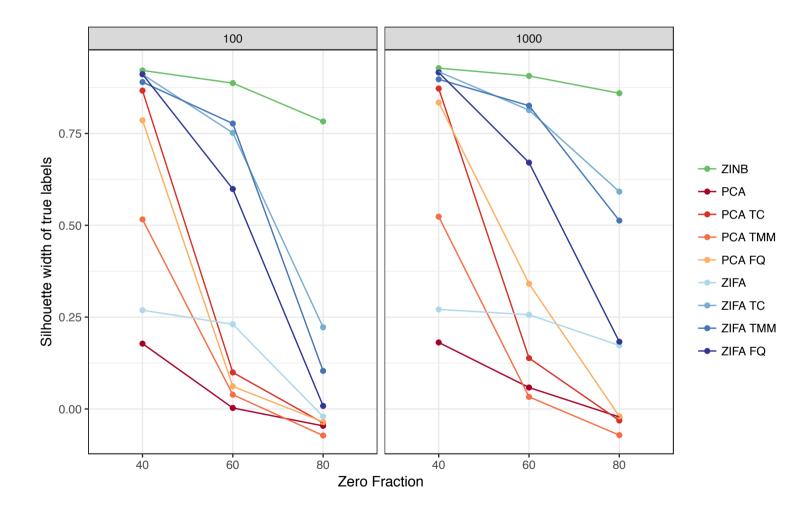
$$\operatorname{Pen}(\beta,\gamma,W,\alpha,\zeta) = \frac{\epsilon_{\beta}}{2} \|\beta^{0}\|^{2} + \frac{\epsilon_{\gamma}}{2} \|\gamma^{0}\|^{2} + \frac{\epsilon_{W}}{2} \|W\|^{2} + \frac{\epsilon_{\alpha}}{2} \|\alpha\|^{2} + \frac{\epsilon_{\zeta}}{2} \operatorname{Var}(\zeta)$$

library(devtools)
install_github("drisso/zinbwave")

Glioblastoma data: keeps less unwanted signal

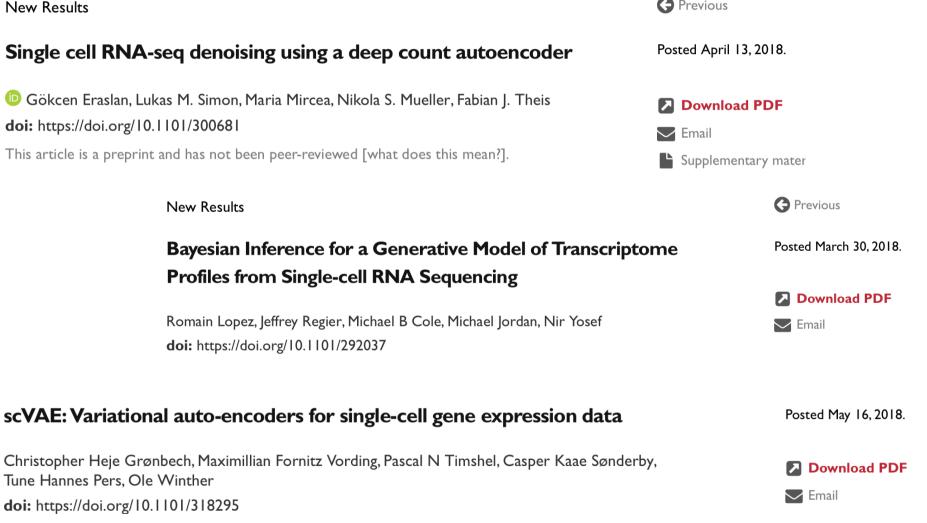


Simulation: robust cluster recovery

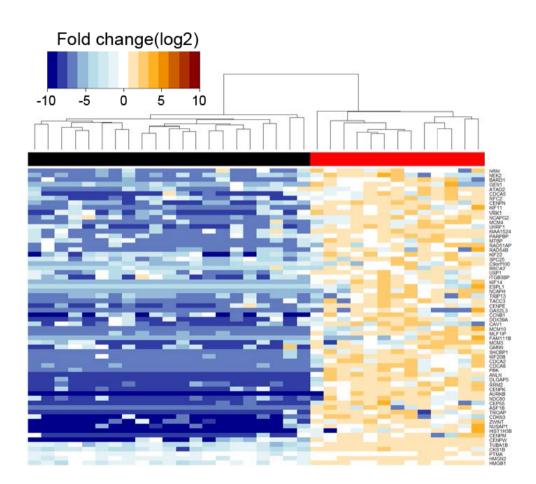


Simulation with the Lun & Marioni (2016) model

More recent work...



Differential Expression (DE)

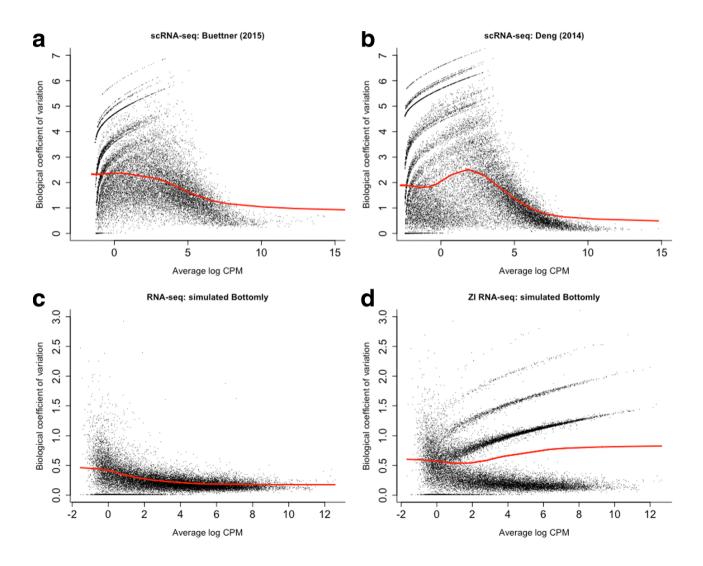


Dedicated tools for « bulk » RNA-seq

- DESeq2
- EdgeR

Need to estimate mean & variance per gene

Zero inflation perturbs mean-variance relationship



Which O's are dropout?

$$f_{ZINB}(y_{ij}; \mu_{ij}, \theta_j, \pi_{ij}) = \pi_{ij}\delta + (1 - \pi_{ij})f_{NB}(y_{ij}; \mu_{ij}, \theta_j)$$

$$W_{ij} = \frac{(1 - \pi_{ij})f_{NB}(y_{ij}; \mu_{ij}, \theta_j)}{f_{ZINB}(y_{ij}; \mu_{ij}, \theta_j, \pi_{ij})}$$

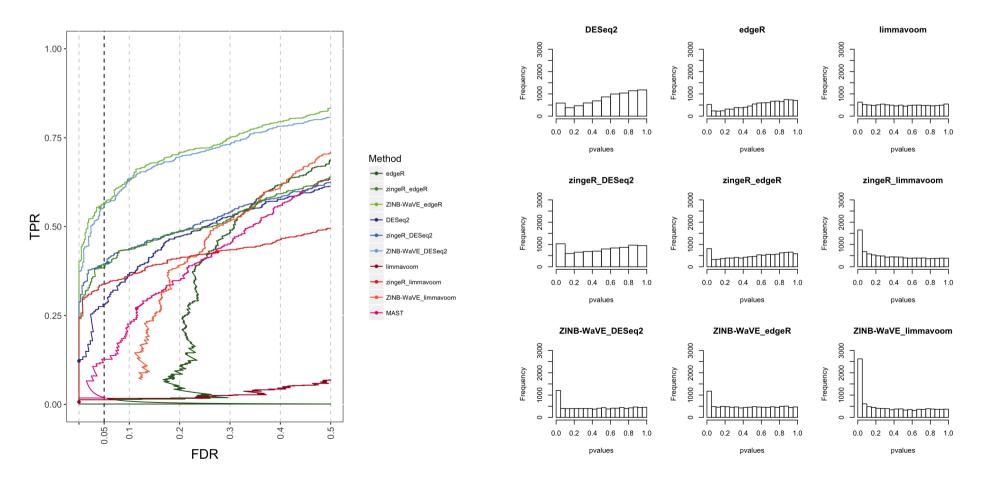
- *Posterior probability that* Y_*ij is not a dropout*
- Can be used as an observation weight in methods for « bulk » RNA-seq

METHOD

CrossMark

Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications

Koen Van den Berge^{1,2†}, Fanny Perraudeau^{3†}, Charlotte Soneson^{4,5}, Michael I. Love⁶, Davide Risso⁷, Jean-Philippe Vert^{8,9,10,11}, Mark D. Robinson^{4,5}, Sandrine Dudoit^{3,12†} and Lieven Clement^{1,2†*}



Supervised classification

- Given a set of labeled scRNA-seq profiles (e.g., cell types), how to learn a **sparse** classifier?
- Popular solution for bulk data: lasso / elastic net regression

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n L(w, x_i, y_i) + \lambda \Omega(w) \right\}$$

 $\Omega_{\text{enet}}(w) = \alpha \|w\|_2^2 + (1 - \alpha)\|w\|_1$

From ridge to dropout regularization

- Ridge regularization is related to additive Gaussian noise in the data
- We should instead be robust to dropout noise in the data, suggesting to use instead dropout regularization (altitude training)

$$\min_{w \in \mathbb{R}^d} \left(\frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\delta_i \sim B(p)^d} L(w, \delta_i \odot \frac{x_{i,j}}{p}, y_i) \right)$$

Droplasso = Dropout + Lasso

B. Khalfaoui

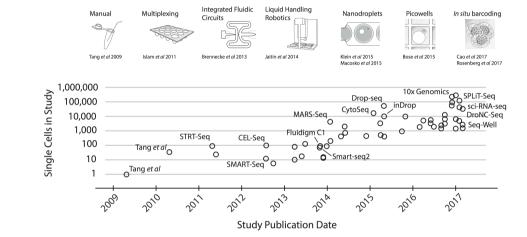
$$\min_{w \in \mathbb{R}^d} \left(\frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\delta_i \sim B(p)^d} L(w, \delta_i \odot \frac{x_{i,}}{p}, y_i) + \lambda \|w\|_1 \right)$$

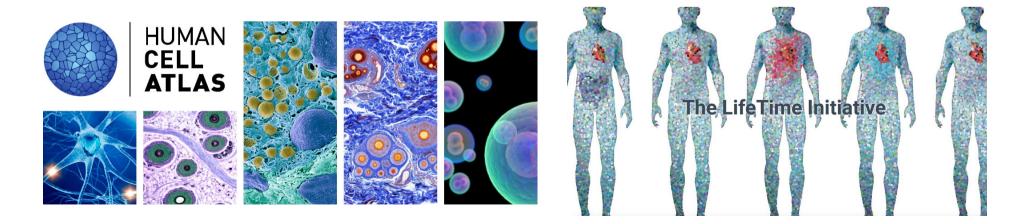
Dataset	Problem	Lasso	Elastic net	Dropout	Droplasso
EMTAB2805	G1 vs G2M	0.72	0.93	0.80	0.95
GSE74596	NKTO vs NKT17	0.84	0.92	0.94	0.97
GSE63818	Primordial germ cells vs somatic	0.93	0.97	0.98	0.99
GSE48968	1h vs 4h LPS stimulation	0.95	0.96	0.96	0.99
GSE81861	Tumour vs normal	0.80	0.85	0.84	0.90

Preliminary results

Much more ahead!

Single-Cell Multiomics: Multiple Measurements from Single Cells Jain C. Macaulay,^{1,*} Chris P. Ponting,^{2,3,*} and Thierry Voet^{2,4,*}





Thanks!

Fanny Perraudeau

Koen Van den Berge Davide Risso

Beyrem Khalfaoui

Svetlana Gribkova

Charlotte Soneson

Mark Robinson

Lieven Clement

Sandrine Dudoit

