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Somatic mutations in cancer

Stratton et al. (2009)



Large-scale efforts to collect somatic mutations

3,378 samples with survival information from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



Patient stratification (unsupervised) from raw mutation
profiles

X Non-Negative matrix
factorisation (NMF)

X Desired behaviour:

X Observed behaviour:

Patients share very few mutated genes!



Survival prediction from raw mutation profiles

Each patient is a binary vector: each gene is mutated (1) or not (2)
Silent mutations are removed
Survival model estimated with sparse survival SVM
Results on 5-fold cross-validation repeated 4 times



Approach: change representation?

Can we replace

x ∈ {0,1}p with p very large, very sparse

by a representation with more information shared between samples

Φ(x) ∈ H

that would allow better supervised and unsupervised classification?



Related work (Hofree et al., 2013)
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Many forms of cancer have multiple subtypes with different 
causes and clinical outcomes. Somatic tumor genome sequences 
provide a rich new source of data for uncovering these 
subtypes but have proven difficult to compare, as two tumors 
rarely share the same mutations. Here we introduce network-
based stratification (NBS), a method to integrate somatic 
tumor genomes with gene networks. This approach allows for 
stratification of cancer into informative subtypes by clustering 
together patients with mutations in similar network regions. 
We demonstrate NBS in ovarian, uterine and lung cancer cohorts 
from The Cancer Genome Atlas. For each tissue, NBS identifies 
subtypes that are predictive of clinical outcomes such as 
patient survival, response to therapy or tumor histology. We 
identify network regions characteristic of each subtype and 
show how mutation-derived subtypes can be used to train  
an mRNA expression signature, which provides similar 
information in the absence of DNA sequence.

Cancer is a disease that is not only complex, i.e., driven by a com-
bination of genes, but also wildly heterogeneous, in that gene 
combinations can vary greatly between patients. To gain a bet-
ter understanding of these complexities, researchers involved 
in projects such as The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC) are systemati-
cally profiling thousands of tumors at multiple layers of genome-
scale information, including mRNA and microRNA expression, 
DNA copy number and methylation, and DNA sequence1–3. There 
is now a strong need for informatics methods that can integrate and 
interpret genome-scale molecular information to provide insight 
into the molecular processes driving tumor progression. Such 
methods are also of pressing need in the clinic, where the impact 
of genome-scale tumor profiling has been limited by the inability 
to derive clinically relevant conclusions from the data4,5.

One of the fundamental goals of cancer informatics is tumor 
stratification, whereby a heterogeneous population of tumors is 
divided into clinically and biologically meaningful subtypes as 
determined by similarity of molecular profiles. Most prior attempts 
to stratify tumors with molecular profiles have used mRNA expres-
sion data2,6–9, resulting in the discovery of informative subtypes 
in diseases such as glioblastoma and breast cancer. On the other 
hand, in TCGA cohorts including colorectal adenocarcinoma and 
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small-cell lung cancer, subtypes derived from expression profiles do 
not correlate with any clinical phenotype including patient survival 
and response to chemotherapy2,10. These results might be due to 
limitations of expression-based analysis11 such as issues with RNA 
sample quality, lack of reproducibility between biological replicates 
and ample opportunities for overfitting of data.

A promising new source of data for tumor stratification is the 
somatic mutation profile, in which high-throughput sequencing 
is used to compare the genome or exome of a patient’s tumor 
to that of the germ line to identify mutations that have become 
enriched in the tumor cell population12. As this set of mutations 
is presumed to contain the causal drivers of tumor progression13, 
similarities and differences in mutations across patients could 
provide invaluable information for stratification. Although indi-
vidual mutations in cancer genes have long been used to stratify 
patients14–17, stratification based on the entire mutation profile 
has been more challenging. Somatic mutations are fundamen-
tally unlike other data types such as expression or methylation, in 
which nearly all genes or markers are assigned a quantitative value 
in every patient. Instead, somatic mutation profiles are extremely 
sparse, with typically fewer than 100 mutated bases in an entire 
exome (Supplementary Fig. 1). They are also remarkably het-
erogeneous, such that it is very common for clinically identical 
patients to share no more than a single mutation2,18,19.

Here we report that these problems can be largely overcome 
by integrating somatic mutation profiles with knowledge of 
the molecular network architecture of human cells. It is widely 
appreciated that cancer is a disease not of individual mutations, 
nor of genes, but of combinations of genes acting in molecular 
networks corresponding to hallmark processes such as cell pro-
liferation and apoptosis20,21. We postulated that, although two 
tumors may not have any mutations in common, they may share 
the networks affected by these mutations (as per Waddington’s 
original theory of ‘genetic canalization’22). Although current  
cancer pathway maps are incomplete, much relevant information 
is available in public databases of human protein-protein, func-
tional and pathway interactions. An increasing number of studies 
have successfully integrated these network databases with tumor 
molecular profiles to map the molecular pathways of cancer23–27.  
Here we focus on the orthogonal problem of using network 
knowledge to stratify a cohort into meaningful subsets. Using this  
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

RESULTS
Overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 
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Figure 1 | Overview of network-based stratification (NBS). (a) Flowchart of the approach. (b) Example illustrating smoothing of patient somatic mutation profiles 
over a molecular interaction network. Mutated genes are shown in yellow (patient 1) and blue (patient 2) in the context of a gene interaction network. Following 
smoothing, the mutational activity of a gene is a continuous value reflected in the intensity of yellow or blue; genes with high scores in both patients appear 
in green (dashed oval). (c) Clustering mutation profiles using non-negative matrix factorization (NMF) regularized by a network. The input data matrix (F) is 
decomposed into the product of two matrices: one of subtype prototypes (W) and the other of assignments of each mutation profile to the prototypes (H). The 
decomposition attempts to minimize the objective function shown, which includes a network influence constraint L on the subtype prototypes. k, predefined 
number of subtypes. (d) The final tumor subtypes are obtained from the consensus (majority) assignments of each tumor after 1,000 applications of the 
procedures in b and c to samples of the original data set. A darker blue color in the matrix coincides with higher co-clustering for pairs of patients.
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NetNorm Overview (Le Morvan et al., 2017)
Take

H =

{
x ∈ {0,1}p :

p∑

i=1

xi = K

}

and use a gene network to transform x to φ(x) ∈ H by
adding/removing mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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NetNorm detail (k=4)

1 Add mutations for patients with few (less than K ) mutations

2 Results

2.1 Overview of NetNorM
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2 Remove mutations for patients for many (more than K ) mutations

2 Results

2.1 Overview of NetNorM
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In practice, K is a free parameter optimized on the training set, typically a few 100’s.



Results: unsupervised classification
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Results: survival prediction
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The importance of Quantile Normalization (QN)

Both NetNorm and NSQN transforms follow a 2-step a approach:
1 Smooth the raw data onto the gene network (NS)
2 Quantile normalize the smoothed profile (QN)

QN matters!
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Standard QN

Data: permutation σ ∈ Sn where σ(i)= rank of item/feature i
Fix a target quantile f ∈ Rn

Define Φf : Sn → Rn by

∀σ ∈ Sn , [Φf (σ)]i = fσ(i)

"Keep the order, change the values"



How to choose a "good" target distribution?



SUQUAN (Le Morvan and Vert, 2017)

Standard QN:
1 Fix f arbitrarily
2 QN all samples to get Φf (σ1), . . . ,Φf (σN)

3 Learn a model on normalized data, e.g.:

min
w ,b

{
1
N

N∑

i=1

`i

(
w>Φf (σi) + b

)
+ λΩ(w)

}

Supervised QN (SUQUAN): jointly learn f and the model:

min
w ,b,f

{
1
N

N∑

i=1

`i

(
w>Φf (σi) + b

)
+ λΩ(w) + γΩ2(f )

}



Computing Φf (σ)

For σ ∈ Sn let the permutation representation (Serres, 1977):

[Πσ]ij =

{
1 if σ(j) = i ,
0 otherwise.

Then
Φf (σ) = Π>σ f



Linear SUQAN as rank-1 matrix regression

Linear SUQUAN therefore solves

min
w ,b,f

{
1
N

N∑

i=1

`i

(
w>Φf (σi) + b

)
+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
N

N∑

i=1

`
(

w>Π>σi
f + b

)
+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
N

N∑

i=1

`
(
< Πσi , fw

> >Frobenius +b
)

+ λΩ(w) + γΩ2(f )

}

A particular linear model to estimate a rank-1 matrix M = fw>

Each sample σ ∈ Sn is represented by the matrix Πσ ∈ Rn×n

Non-convex
Alternative optimization of f and w is easy



Experiments: CIFAR-10

Image classification into 10 classes (45 binary problems)
N = 5,000 per class, p = 1,024 pixels
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Experiments: CIFAR-10

Example: horse vs. plane
Different methods learn different quantile functions

original median SVD SUQUAN BND

Index
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Limits of the QN embedding

Linear model on Φ(σ) = Πσ ∈ Rn×n

Captures first-order information of the form "i -th feature ranked at
the j-th position"
What about higher-order information such as "feature i larger than
feature j"?



Another representation

Φi,j(σ) =

{
1 if σ(i) < σ(j) ,
0 otherwise.



Geometry of the embedding

For any two permutations σ, σ′ ∈ Sn:
Inner product

Φ(σ)>Φ(σ′) =
∑

1≤i 6=j≤n

1σ(i)<σ(j)1σ′(i)<σ′(j) = nc(σ, σ′)

nc = number of concordant pairs
Distance

‖Φ(σ)− Φ(σ′) ‖2 =
∑

1≤i,j≤n

(1σ(i)<σ(j) − 1σ′(i)<σ′(j))2 = 2nd (σ, σ′)

nd = number of discordant pairs



Kendall and Mallows kernels (Jiao and Vert, 2017)

The Kendall kernel is

Kτ (σ, σ′) = nc(σ, σ′)

The Mallows kernel is

∀λ ≥ 0 K λ
M(σ, σ′) = e−λnd (σ,σ

′)

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)
These two kernels for permutations can be evaluated in O(n log n)
time.

Kernel trick useful with few samples in large dimensions



Related work

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(n2n))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ

′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(n log n)



Applications
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Extension: weighted Kendall kernel?

Can we weight differently pairs based on their ranks?
This would ensure a right-invariant kernel, i.e., the overall
geometry does not change if we relabel the items

∀σ1, σ2, π ∈ Sn , K (σ1π, σ2π) = K (σ1, σ2)



Related work

Given a weight function w : [1,n]2 → R, many weighted versions
of the Kendall’s τ have been proposed:
∑

1≤i 6=j≤n

w(σ(i), σ(j))1σ(i)<σ(j)1σ′(i)<σ′(j) Shieh (1998)

∑

1≤i 6=j≤n

w(σ(i), σ(j))
pσ(i) − pσ′(i)
σ(i)− σ′(i)

pσ(j) − pσ′(j)
σ(j)− σ′(j) 1σ(i)<σ(j)1σ′(i)<σ′(j)

Kumar and Vassilvitskii (2010)
∑

1≤i 6=j≤n

w(i , j)1σ(i)<σ(j)1σ′(i)<σ′(j) Vigna (2015)

However, they are either not symmetric (1st and 2nd), or not
right-invariant (3rd)



A right-invariant weighted Kendall kernel (Jiao and
Vert, 2018)

Theorem

Let W : N2 × N2 → R be a p.d. kernel on N2, then

KW (σ, σ′) =
∑

1≤i 6=j≤n

W
(
(σ(i), σ(j)), (σ′(i), σ′(j))

)
1σ(i)<σ(j)1σ′(i)<σ′(j)

is a right-invariant p.d. kernel on Sn.

Corollary
For any matrix U ∈ Rn×n,

KU(σ, σ′) =
∑

1≤i 6=j≤n

Uσ(i),σ(j)Uσ′(i),σ′(j)1σ(i)<σ(j)1σ′(i)<σ′(j) ,

is a right-invariant p.d. kernel on Sn.



A right-invariant weighted Kendall kernel (Jiao and
Vert, 2018)

Theorem

Let W : N2 × N2 → R be a p.d. kernel on N2, then

KW (σ, σ′) =
∑

1≤i 6=j≤n

W
(
(σ(i), σ(j)), (σ′(i), σ′(j))

)
1σ(i)<σ(j)1σ′(i)<σ′(j)

is a right-invariant p.d. kernel on Sn.

Corollary
For any matrix U ∈ Rn×n,

KU(σ, σ′) =
∑

1≤i 6=j≤n

Uσ(i),σ(j)Uσ′(i),σ′(j)1σ(i)<σ(j)1σ′(i)<σ′(j) ,

is a right-invariant p.d. kernel on Sn.



Examples

Ua,b corresponds to the weight of (items ranked at) positions a and b in
a permutation. Interesting choices include:

Top-k. For some k ∈ [1,n],

Ua,b =

{
1 if a ≤ k and b ≤ k ,
0 otherwise.

Additive. For some u ∈ Rn, take

Uij = ui + uj

Multiplicative. For some u ∈ Rn, take

Uij = uiuj

.Theorem (Kernel trick)
The weighted Kendall kernel can be computed in O(n ln(n)) for the
top-k, additive or multiplicative weights.



Learning the weights (1/2)

KU can be written as

KU(σ, σ′) = ΦU(σ)>ΦU(σ′)

with
ΦU(σ) =

(
Uσ(i),σ(j)1σ(i)<σ(j)

)
1≤i 6=j≤n

Interesting fact: For any upper triangular matrix U ∈ Rn×n,

ΦU(σ) = Π>σ UΠσ with (Πσ)ij = 1i=σ(j)

Hence a linear model on ΦU can be rewritten as

fβ,U(σ) = 〈β,ΦU(σ)〉Frobenius(n×n)

=
〈
β,Π>σ UΠσ

〉
Frobenius(n×n)

=
〈

Πσ ⊗ Πσ, vec(U)⊗ (vec(β))>
〉

Frobenius(n2×n2)



Learning the weights (2/2)

fβ,U(σ) =
〈

Πσ ⊗ Πσ, vec(U)⊗ (vec(β))>
〉

Frobenius(n2×n2)

This is symmetric in U and β
Instead of fixing the weights U and optimizing β, we can jointly
optimize β and U to learn the weights U
Note that Π>σ = (Πσ)−1 = Πσ−1 , hence

fβ,U(σ) = fU,β(σ−1)

We propose to alternate optimization in U and β
For U fixed, optimize β with KU(σ1, σ2)
For β fixed, optimize U with Kβ(σ−1

1 , σ−1
2 )



Experiments

Eurobarometer data (Christensen, 2010)
>12k individuals rank 6 sources of information
Binary classification problem: predict age from ranking (>40y vs
<40y)
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Weights learned
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Towards higher-order representations

fβ,U(σ) =
〈

Πσ ⊗ Πσ, vec(U)⊗ (vec(β))>
〉

Frobenius(n2×n2)

A particular rank-1 linear model for the embedding

Σσ = Πσ ⊗ Πσ ∈ ({0,1})n2×n2

Σ is the direct sum of the second-order and first-order permutation
representations:

Σ ∼= τ(n−2,1,1) ⊕ τ(n−1,1)

This generalizes SUQUAN which considers the first-order
representation Πσ only:

hβ,w (σ) =
〈

Πσ,w ⊗ β>
〉

Frobenius(n×n)

Generalization possible to higher-order information by using
higher-order linear representations of the symmetric group, which
are the good basis for right-invariant kernels (Bochner theorem)...



Conclusion

SUQUAN	Kendall	

Lots of complex data in genomics; feature engineering still
relevant
Machine learning beyond vectors, strings and graphs
Different embeddings of the symmetric group
Respect the group structure (right-invariance) through group
representations
Compatible with NN architectures
Scalability? Approximate embeddings?



Thanks

Point&d’étape&ITI&/&20&FEVRIER&–&1er&JUILLET&2014&!
C.SURIAM!–!F.LEQUEUX!

! ! !

!
POINT&D’ETAPE&20&FEVRIER&–&1er&JUILLET&2014&

!

1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!



References

R. E. Barlow, D. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical inference under order
restrictions; the theory and application of isotonic regression. Wiley, New-York, 1972.

T. Christensen. Eurobarometer 55.2: Science and technology, agriculture, the euro, and internet
access, may-june 2001. https://doi.org/10.3886/ICPSR03341.v3, June 2010.
ICPSR03341-v3. Cologne, Germany: GESIS/Ann Arbor, MI: Inter-university Consortium for
Political and Social Research [distributors], 2010-06-30.

M. Hofree, J. P. Shen, H. Carter, A. Gross, and T. Ideker. Network-based stratification of tumor
mutations. Nat Methods, 10(11):1108–1115, Nov 2013. doi: 10.1038/nmeth.2651. URL
http://dx.doi.org/10.1038/nmeth.2651.

Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In Proceedings of The
32nd International Conference on Machine Learning, volume 37 of JMLR:W&CP, pages
1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.

Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017. doi: 10.1109/TPAMI.2017.2719680. URL
http://dx.doi.org/10.1109/TPAMI.2017.2719680.

Y. Jiao and J.-P. Vert. The weighted kendall and high-order kernels for permutations. Technical
Report 1802.08526, arXiv, 2018.

W. R. Knight. A computer method for calculating Kendall’s tau with ungrouped data. J. Am. Stat.
Assoc., 61(314):436–439, 1966. URL http://www.jstor.org/stable/2282833.

http://dx.doi.org/10.1038/nmeth.2651
http://jmlr.org/proceedings/papers/v37/jiao15.html
http://dx.doi.org/10.1109/TPAMI.2017.2719680
http://www.jstor.org/stable/2282833


References (cont.)

R. Kumar and S. Vassilvitskii. Generalized distances between rankings. In Proceedings of the
19th International Conference on World Wide Web (WWW-10), pages 571–580. ACM, 2010.
doi: 10.1145/1772690.1772749.

M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244,
arXiv, 2017.

M. Le Morvan, A. Zinovyev, and J.-P. Vert. NetNorM: capturing cancer-relevant information in
somatic exome mutation data with gene networks for cancer stratification and prognosis.
PLoS Comp. Bio., 13(6):e1005573, 2017. URL
http://hal.archives-ouvertes.fr/hal-01341856.

J.-P. Serres. Linear Representations of Finite Groups. Graduate Texts in Mathematics.
Springer-Verlag New York, 1977. doi: 10.1007/978-1-4684-9458-7. URL
http://dx.doi.org/10.1007/978-1-4684-9458-7.

G. S. Shieh. A weighted Kendall’s tau statistic. Statistics & Probability Letters, 39(1):17–24,
1998. doi: 10.1016/s0167-7152(98)00006-6. URL
http://dx.doi.org/10.1016/S0167-7152(98)00006-6.

M. R. Stratton, P. J. Campbell, and P. A. Futreal. The cancer genome. Nature, 458(7239):
719–724, Apr 2009. doi: 10.1038/nature07943. URL
http://dx.doi.org/10.1038/nature07943.

O. Sysoev and O. Burdakov. A smoothed monotonic regression via l2 regularization. Technical
Report LiTH-MAT-R–2016/01–SE, Department of mathematics, Linköping University, 2016.
URL http://liu.diva-portal.org/smash/get/diva2:905380/FULLTEXT01.pdf.

http://hal.archives-ouvertes.fr/hal-01341856
http://dx.doi.org/10.1007/978-1-4684-9458-7
http://dx.doi.org/10.1016/S0167-7152(98)00006-6
http://dx.doi.org/10.1038/nature07943
http://liu.diva-portal.org/smash/get/diva2:905380/FULLTEXT01.pdf


References (cont.)

S. Vigna. A weighted correlation index for rankings with ties. In Proceedings of the 24th
International Conference on World Wide Web (WWW-15), pages 1166–1176. ACM, 2015.
doi: 10.1145/2736277.2741088.



NetNorM and NSQN benefit from biological
information in the gene network

Comparison with 10 randomly permuted networks:
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Selected genes represent "true" or "proxy" mutations
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Proxy mutations encode both total number of
mutations and local mutational burden

a b

c

Figure 4 – Analysis of predictive genes. (a) Comparison of survival prediction performances according
to patients’ mutation rate for LUAD. Three di↵erent representations of the mutations are used to perform
survival prediction using a ranking SVM: raw (the raw binary mutation data), NSQN (network smoothing
with quantile normalisation) and NetNorM. NSQN and NetNorM are applied with Pathway Commons as
gene-gene interaction network. Performances for half of the patients with fewer (resp. more) mutations are
derived from the predictions made using the whole dataset. (b) Scatter plot of the correlation between the
total number of mutations across patients and the number of mutated neighbours of a gene across patients
(x-axis) against the degree of a gene (y-axis). This plot was generated using the raw mutation data for LUAD
and Pathway Commons. (c) Scatter plot of the total number of mutations in a patient (x-axis) against the
number of mutated neighbours of KHDRBS1 in a patient (y-axis). Only patients with less that kmed = 295
mutations are shown, where kmed is the median value of k learned across cross-validation folds. Red (resp.
blue) indicate patients mutated (resp. non mutated) in KHDRBS1 after processing with NetNorM using
k = kmed. The black line was fit by linear regression and by definition indicates the expected number of
mutated neighbours of KHDRBS1 given the mutation rate of a patient. The plot was generated using the
LUAD dataset with Pathway Commons.

10

KHDRBS1: a member of the K homology domain-containing, RNA-binding, signal transduction-associated protein family



Adding good old clinical factors
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QN after network smoothing



Constraints on f

Ridge

F0 =

{
f ∈ Rp :

1
p

p∑

i=1

f 2
i ≤ 1

}
.

Non-decreasing

FBND = F0 ∩ I0 , where I0 = {f ∈ Rp : f1 ≤ f2 ≤ . . . ≤ fp}

Non-decreasing and smooth

FSPAV =



f ∈ I0 :

p−1∑

j=1

(fj+1 − fj)2 ≤ 1



 .



SUQUAN-BND and SUQUAN-PAVA

5.2 SUQUAN-BND and SUQUAN-SPAV
We now focus on approximate algorithms to solve (8) in the case where F = FBND or F = FSPAV . Using
the biconvexity of (8) in w and f , we propose an alternate optimisation scheme in w and f . Algorithm 2
summarises the procedure. Starting from an initial non-decreasing target quantile finit 2 I0, it outputs a
new target quantile f obtained by minimising once (8) in w for f = finit fixed, then minimising in f for w
fixed. Each alternative optimisation is particularly simple and efficient. For a given f , the optimisation in
(w, b) amounts to solving a standard linear model optimisation over the samples (⇧x1

f, . . . ,⇧xn
f). For a

given w, the optimisation in f differs according to the regularisation type. With FBND, the optimisation
in f is an isotonic optimisation problem (because of the constraints in FBND that entries in f should be
non-decreasing) involving the samples

�
⇧>

x1
w, . . . ,⇧>

xn
w
�
, which we solve by accelerated proximal gradient

optimisation, borrowing the pool adjacent violators algorithm (PAVA, [2]) as proximal operator to project
onto the set of monotonically increasing vectors in O(p). With FSPAV, this is a smoothed isotonic optimisation
problem via `2 regularisation. Again, we solve this problem by accelerated proximal gradient optimisation
but this time borrowing the Smoothed Pool Adjacent Violators (SPAV, [28]) as proximal operator which
costs O(p2) operations; in this case we solve a penalised version (as opposed to a constrained version) of the
problem, inducing a second regularisation parameter �. Interestingly, the computation of each matrix-vector
products ⇧xi

f and ⇧>
xi

w before each alternative optimisation is just an O(p) operation, after the sample
xi has been sorted once at the first iteration in O(p ln(p)). Indeed, for a given x, if we note order(x) the
permutation which rearranges the entries of x in increasing order, and rank(x) the ranks of the entries of x,
then we simply have (⇧xf)j = frank(x)j

and (⇧>
x w)j = worder(x)j

, for j = 1, . . . , p, which we simply denote
as ⇧xf = f [rank(x)] and ⇧>

x w = w[order(x)] in Algorithm 2. Note that the procedure can be iterated to
produce a sequence of target quantiles although we found in our experiments below that the performance did
not change significantly after the first iteration. Note also that, contrary to SUQUAN-SVD, this algorithm
requires an initial non-decreasing target quantile function. By default we suggest to use the median of the
data quantile functions, which is often the default used in standard QN normalisation.

Algorithm 2: SUQUAN-BND and SUQUAN-SPAV
Input: (x1, y1), . . . , (xn, yn), finit 2 I0, � 2 R
Output: f 2 I0 target quantile
1: for i = 1 to n do
2: ranki, orderi  sort(xi)
3: end for
4: w, b argmin

w,b

1
n

Pn
i=1 `i

�
w>finit[ranki] + b

�
+ �||w||2

(standard linear model optimisation)
5: f  argmin

f2FBND

1
n

Pn
i=1 `i

�
f>w[orderi] + b

�

(isotonic optimisation problem using PAVA as prox)
OR
f  argmin

f2FSP AV

1
n

Pn
i=1 `i

�
f>w[orderi] + b

�

(smoothed isotonic optimisation problem using SPAV as prox)

6 Experiments

6.1 Simulated data
We first test the ability of SUQUAN to overcome unwanted changes in quantile distributions on simulated
datasets. For that purpose we fix f 2 Rp to be the quantile distribution of the normal distribution, and
simulate each sample x1, . . . , xn 2 Rp by randomly permuting the entries of f . We then generate binary
labels y1, . . . , yn 2 {�1, 1} using the logistic model P (Y = 1 | X = x) = 1

1+exp(�w>x)
, where w is randomly

sampled from a standard multivariate normal distribution. We then compare four methods to estimate w
from n observations:

6

Alternate optimization in w and f , monotonicity constraint on f
Accelerated proximal gradient optimization for f , using the Pool
Adjacent Violators Algorithm (PAVA, Barlow et al. (1972)) or the
Smoothed Pool Adjacent Violators algorithm (SPAV, Sysoev and
Burdakov (2016)) as proximal operator.



A variant: SUQUAN-SVD

(i, j)-th entry equal to 1 whenever the i-th entry of x is smaller than the j-th entry, and showed how
Frobenius-norm regularised linear models can be estimated efficiently thanks to the kernel trick because
the inner product between two p⇥ p matrices corresponding to two vector embeddings can be computed
in O(p ln(p)) with an efficient implementation of the Kendall ⌧ statistics. It can be observed that the
permutation representation  used by SUQUAN is also trivially amenable to benefit from the kernel
trick: to compute the inner product between  (x) and  (x0) for two vectors x and x0, one just needs
to sort the entries of each vector independently, in O(p ln(p)), and count in O(p) how many entries are
ranked at the same position. However, the permutation representation is extremely sparse (p non-zero
values among p(p� 1) zeros) and only controlling the Frobenius norm of M (in order to benefit from
the kernel trick) may not be sufficient to fight possible overfitting.

• M is not a convex set, and SUQUAN is therefore not a convex optimisation problem. A possible
variant of SUQUAN would be to relax the rank constraint and replace it for example by a trace norm
constraint, which is known to be a natural convex surrogate for the rank [27].

5 Algorithms
The SUQUAN formulation (8) is a nonconvex optimisation problem since the set of rank-1 matrices M is not
convex. To approximatively solve it, we now propose two strategies. The first one, SUQUAN-SVD, does not
really attempt to solve (8) but instead to directly find a good target quantile f 2 F0 for binary classification
problems. The second one aims to find an approximate solution to (8) by performing alternate optimisation
in f and w, as the problem is biconvex.

5.1 SUQUAN-SVD

Algorithm 1: SUQUAN-SVD
Input:

(x1, y1), . . . , (xn, yn) 2 Rp ⇥ {�1, 1}
Output: f 2 F0 target quantile
1: MLDA  0 2 Rp⇥p

2: n+1  |{i : yi = +1}|
3: n�1  |{i : yi = �1}|
4: for i = 1 to n do
5: Compute ⇧xi

(by sorting xi)
6: MLDA  MLDA + yi

nyi
⇧xi

7: end for
8: (�, w, f) SV D(MLDA, 1)

In the case where F = F0, i.e., when we do not constrain
f to be non-decreasing, and ⌦(�) = ||�||2, then the set M
of candidate matrices in (8) is exactly the set of rank-1 ma-
trices. In that case, (8) amounts to finding a rank-1 matrix
that approximatively solves a linear regression or classifica-
tion problem. Let us consider the binary classification setting,
when the training set is composed of pairs (xi, yi)i=1,...,n with
yi 2 {�1, +1}. In that case, a simple linear classifier (without
rank constraint) is the one obtained by linear discriminant
analysis with identity covariance: MLDA = µ+ � µ�, where
µ+ and µ� are respectively the means of the matrices ⇧xi for
the positive and negative classes. Consequently, a good rank-
1 candidate classifier is the closest rank-1 matrix to MLDA,
namely u�v> where u and v are the left and right singular
vectors of MLDA associated to the largest singular value �.
Hence we recover a target quantile function by keeping only
the first right singular vector of MLDA, which can then be used as target quantile for quantile normalising
the training points before running any linear classification method. Algorithm 1 summarises the method.
Computing ⇧xi

on line 5 involves an O(p ln(p)) sorting of the entries of xi, and therefore computing MLDA,
which is a linear combination of n permutation matrices, requires O(np ln(p)) operations. Then computing
the right largest singular vector (line 8) of MLDA typically costs another O(p2) operations using a naive
power iteration method. However, if n  p, we can exploit the fact that the product of a permutation matrix
by a vector is just an O(p) operation (just order the vector according to the permutation), so that the power
iteration to compute the first singular vector only takes O(np). Computing the right largest singular vector
therefore has an O(min(p2, np)) complexity. Hence the complexity of SUQUAN-SVD is O(np ln(p)), which is
the same as the complexity of the quantile normalisation.

5

Ridge penalty (no monotonicity constraint), equivalent to rank-1
regression problem
SVD finds the closest rank-1 matrix to the LDA solution:

MLDA =
1

n+

∑

i : yi=+1

Πxi −
1

n−

∑

i : yi=+1

Πxi

Complexity O(np ln(p)) (same as QN only)



Experiments: Simulations

True distribution of X entries is normal
Corrupt data with a cauchy, exponential, uniform or bimodal
gaussian distributions.
p = 1000, n varies, logistic regression.
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