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Classical statistical leverage scores

Goal: characterize how points “stick out” and affect the results of a
statistical procedure
Linear regression model:

y = Xβ + ε

Ordinary least squares

ŷ = Hy with H = X (X>X )−1X>

Leverage scores:
` = diag(H)

Property

∀i = 1, . . . ,n `i =
∂ŷi

∂yi



λ-ridge leverage scores

(Kernel) ridge regression

ŷ = H(λ)y with H(λ) = X (X>X + nλIp)−1X> = K (K + nλIn)−1

Leverage scores:
`(λ) = diag(H(λ))



Use of leverage scores

Diagnosis tool for linear regression (Hoaglin and Welsch, 1978;
Velleman and Welsch, 1981; Chatterjee and Hadi, 1986)
Matrix sketching and column sampling (Mahoney and Drineas,
2009; Mahoney, 2011; Drineas et al., 2012; Wang and Zhang,
2013)
Low rank matrix approximation (Clarkson and Woodruff, 2013;
Bach, 2013)
Regression (Alaoui and Mahoney, 2015; Rudi et al., 2015; Ma
et al., 2015)
Random feature learning (Rudi and Rosasco, 2017)
Quadrature (Bach, 2017).



Open questions: Link between leverage score and
density?

Figure 1: The �-ridge leverage scores for the synthetic Bernoulli data set described in the text (left)
and the MSE risk vs. the number of sampled columns used to construct the Nyström approximation for
di↵erent sampling methods (right).

4 Experiments

We test our results based on several datasets: one synthetic regression problem from [2] to
illustrate the importance of the �-ridge leverage scores, the Pumadyn family consisting of three
datasets pumadyn-32fm, pumadyn-32fh and pumadyn-32nh 5 and the Gas Sensor Array Drift
Dataset from the UCI database6. The synthetic case consists of a regression problem on the
interval X = [0, 1] where, given a sequence (xi)1in and a sequence of noise (✏i)1in, we
observe the sequence

yi = f(xi) + �2✏i, i 2 {1, · · · , n}.

The function f belongs to the RKHS F generated by the kernel k(x, y) = 1
(2�)!B2�(x�y�bx�yc)

where B2� is the 2�-th Bernoulli polynomial [2]. One important feature of this regression problem
is the distribution of the points (xi)1in on the interval X : if they are spread uniformly over the
interval, the �-ridge leverage scores (li(�))1in are uniform for every � > 0, and uniform column
sampling is optimal in this case. In fact, if xi = i�1

n for i = 1, · · · , n, the kernel matrix K is a
circulant matrix [2], in which case, we can prove that the �-ridge leverage scores are constant.
Otherwise, if the data points are distributed asymmetrically on the interval, the �-ridge leverage
scores are non uniform, and importance sampling is beneficial (Figure 1). In this experiment, the
data points xi 2 (0, 1) have been generated with a distribution symmetric about 1

2 , having a high
density on the borders of the interval (0, 1) and a low density on the center of the interval. The
number of observations is n = 500. On Figure 1, we can see that there are few data points with
high leverage, and those correspond to the region that is underrepresented in the data sample
(i.e. the region close to the center of the interval since it is the one that has the lowest density
of observations). The �-ridge leverage scores are able to capture the importance of these data
points, thus providing a way to detect them (e.g. with an analysis of outliers), had we not known
their existence.

For all datasets, we determine � and the band width of k by cross validation, and we compute
the e↵ective dimensionality de↵ and the maximal degrees of freedom dmof. Table 1 summarizes
the experiments. It is often the case that de↵ ⌧ dmof and R(f̂L)/R(f̂K) ' 1, in agreement with
Theorem 3.

5http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
6https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset
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“In this experiment, the data points xi ∈ (0,1) have been generated with a
distribution symmetric about 1, having a high density on the borders of the
interval (0,1) and a low density on the center of the interval. [...] We can see
that there are few data points with high leverage, and those correspond to the
region that is underrepresented in the data sample (i.e. the region close to
the center of the interval since it is the one that has the lowest density of
observations).” (Alaoui and Mahoney, 2015)
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Main result

For a class of translation-invariant kernels K on Rd

E.g., Sobolev space of functions with squared integrable derivatives
of order up to s > d/2

For the population λ-ridge leverage score

∀z ∈ Rd , Lλ(z) =
〈

k(z, ·), (Σ + λI)−1k(z, ·)
〉
HK

We have, for any z ∈ Rd with p(z) > 0:

Lλ(z) ∼
λ→0, λ>0

L0λ
−d/(2s)p(z)d/2s−1



Remarks

Lλ(z) ∼
λ→0, λ>0

L0λ
−d/(2s)p(z)d/2s−1

⌫ = 3 , l = 0.2 ⌫ = 4 , l = 0.2

⌫ = 1 , l = 0.2 ⌫ = 2 , l = 0.2
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Explicit relationship between leverage score and density
Leverage score can be used for density estimation and outlier
detection
May suggest new ways to estimate the leverage score
Not valid for all kernels (e.g., Gaussian is too smooth)
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Regularized Christoffel function

Christoffel function, for l ∈ N:

Λl(z) = min
P∈Rl [X ]

∫
(P(x))2p(x)dx such that P(z) = 1 ,

NEW: Regularized Christoffel function, for λ > 0

Cλ(z) = inf
f∈H

∫
Rd

f (x)2p(x)dx + λ‖f‖2H such that f (z) = 1 .

Link with leverage score

∀z ∈ Rd , Cλ(z) =
1

Lλ(z)



Proof sketch

We study the asymptotics of Cλ

We show, under some assumptions on the kernel
K (x , y) = q(x − y), that:

Cλ(z) ∼
λ→0, λ>0

p(z)D
(

λ

p(z)

)
,

where

D(λ) := min
f∈H

∫
Rd

f (x)2dx + λ‖f‖2H subject to f (0) = 1

=
(2π)d∫

Rd
q̂(ω)

λ+q̂(ω)dω



Conclusion

Leverage scores are classical tools in statistics, which gained
importance in ML for sketching, sampling, approximating
We propose a variational formulation of leverage scores, that is an
extension of Christoffel functions
This allows to prove that, under some assumptions on the kernel,
leverage scores and proportional to a negative power of the
density
This can suggest new ways to estimate leverage scores, and
clarifies why they can be used for density estimation and outlier
detection

THANK YOU
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