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Modern ML works well!

Ingredients:
1 Collect big, labeled data (eg, 10M images)
2 Use a model well adapted to the data (eg, CNN)

(from https://www.youtube.com/watch?v=gjK70r0Rqzs)

3 Large computational power + know-how ("alchemy"?)
Many applications: object/face recognition in images, machine
translation, speech recognition, go, self-driving cars, trading,
recommender systems, chemistry, material science...

https://www.youtube.com/watch?v=gjK70r0Rqzs


Promising applications in health: images, texts, ..?

(Mobadersany et al., 2018)

Also: high-content screening, digital pathology, radiomics, skin
diagnosis, EHR, ...



More challenging data

Gene expression

Somatic mutations

n = 102 ∼ 104 (patients)
p = 104 ∼ 107 (genes, mutations, copy number, ...)
Data of various nature (continuous, discrete, structured, ...)
Data of variable quality (technical/batch variations, noise, ...)



Consequence: limited accuracy

Breast cancer prognosis competition, n = 2000, Bilal et al (2013)

C: 16 standard clinical data (age, tumor size, ...)
M: 80k molecular features (gene expression, DNA copy number)
P: incorporate prior knowledge



Consequence: unstable biomarker selection

70	genes	(Nature,	2002)	 76	genes	(Lancet,	2005)	

3	genes	in	common	

van ’t Veer et al. (2002); Wang et al. (2005)



What to do?

Get more data
with labels
sharing data (or models) is crucial
of good quality

Improve the models
include prior knowledge (biology, structure of noise, invariants...)
balance model complexity vs data available



More data helps

...but performance increases slowly. How much can be afford?

Method mAP@0.5 mAP@[0.5,0.95]
He et al. [16] 53.3 32.2
ImageNet 53.6 34.3
300M 56.9 36.7
ImageNet+300M 58.0 37.4
Inception ResNet [38] 56.3 35.5

Table 2. Object detection performance comparisons with baseline
methods on the COCO test-dev split. The first four Faster RCNN
detectors are all based on ResNet-101 architecture, the last one is
based on the InceptionResNet-v2 architecture. During inference, a
single image scale and crop, and a single detection model are used
for all experiments. Vanilla Faster RCNN implementations are
used for all systems except for He et al. [16], which also includes
box refinement and context.

ing inference, we use 300 RPN proposals. Our vanilla
FasterRCNN implementation does not use the multi-scale
inference, context or box-refinement as described in [33].

Comparison with ImageNet Models

We first present the performance comparison with Ima-
geNet checkpoints. Table 2 shows the detection perfor-
mance on COCO ‘test-dev’ split. To show that our Faster
RCNN baseline is competitive, we also report results from
the Faster RCNN paper [16], which uses both box refine-
ment and context information. We can see that our Ima-
geNet baseline performs competitively.

We evaluate JFT-300M trained from scratch (‘300M’)
and from ImageNet initialization (’ImageNet+300M’).
Both models outperforms the ImageNet baseline by large
margins, with 3.3% and 4.4% boost in mAP@.5, 2.4% and
3.1% in mAP@[.5,.95] respectively. As a reference, we also
show the performance of ImageNet trained InceptionRes-
Netv2 in Table 2. We would like to point out that the gain
is even more significant than recently achieved by doubling
the number of layers on Inception ResNet [18]. This clearly
indicates that while there are indications of a plateauing ef-
fect on model representation capacity; in terms of data there
is still a lot that can be easily gained.

Table 3 shows the performance on the PASCAL VOC
2007 ‘test’ set. Again, both JFT-300M checkpoints out-
performs the ImageNet baseline significantly, by 5.1% and
5.0% mAP@.5 respectively.

Impact of Epochs

We study how the number of training epochs affects the
object detection performance. For this experiment we re-
port results on COCO minival⇤ set. Table 4 shows the per-
formance comparison when the JFT-300M model has been
trained for 1.3, 2.6 and 4 epochs respectively. We can see
that as the number of training steps increases, the perfor-
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Figure 4. Object detection performance when initial checkpoints
are pre-trained on different subsets of JFT-300M from scratch.
x-axis is the data size in log-scale, y-axis is the detection per-
formance in mAP@[.5,.95] on COCO minival⇤ (left), and in
mAP@.5 on PASCAL VOC 2007 test (right).

mance also improves. As a comparison, in Table 5 we show
the ImageNet counterpart when trained for 3, 6, 12 and
150 epochs, we can see that the performance of ImageNet
checkpoints improves faster than JFT-300M with respect to
the number of epochs.

We would also like to point out that our learning sched-
ules have been developed using the experience from smaller
datasets. One can envision better learning schedules which
provide more improvement as more epochs are used.

Impact of Data Size

For this experiment, we randomly sample a subset of 10M,
30M and 100M images from the JFT-300M training data.
We use the same training schedule as the JFT-300M model
training. We pick the checkpoints corresponding to the 4th
epoch for each subset. To study the impact of learned visual
representations, we also conduct an experiments to freeze
the model weights for all layers before the conv5 block. For
this set of experiments we change the learning rate decay to
happen at 900K steps, and the total number of training steps
to 1.5M, as we find they tend to converge earlier.

In Figure 4, we show the mAP@[.5,.95] with check-
points trained on different JFT-300M subsets, the blue curve
corresponds to the regular faster RCNN training (with fine-
tuning), while the red curve corresponds to freezing feature
extractors. Not surprisingly, fine-tuning offers significantly
better performance on all data sizes. Most interestingly, we
can see that the performance grows logarithmically as pre-
training data expands, this is particularly true when feature
extraction layers are frozen.

Impact of Classes

JFT-300M has 18K labels in total. To understand what the
large number of classes brings us, we select a subset of 941
labels which have direct correspondence to the 1000 Ima-
geNet labels, and sample JFT-300M images which contain

Object detection performance on two benchmarks (COCO minimal, left, and PASCAL VOC 2007, right) as a function of the
number of labeled images used to train the model (Sun et al., 2017).



Some research directions

Regularize and incorporate prior knowledge

Find a better representation



Outline

1 Regularize

2 Change representation



Typical problem

n samples (patients), p features (genes)
X ∈ Rn×p gene expression profile of each patient
Y ∈ Yn survival information of each patient
Fit a linear model for a sample x ∈ Rp:

f (x) = β>x =

p∑
i=1

βixi

Standard methods (least squares or logistic regression) won’t
work because n < p



Regularized linear models

In high dimension, estimate β by solving

min
β∈Rp

R(Y ,Xβ) + λJ(β) ,

where
R(Y ,Xβ) is an empirical risk to measures the fit to the training
data
J(β) is a penalty to control the complexity of the model
λ > 0 is a regularization parameter



Standard regularizations

min
β∈Rp

R(Y ,Xβ) + λJ(β)

where
Lasso: J(β) = ‖β‖1 for gene selection.
Ridge: J(β) = ‖β‖22 to address n� m.
Elastic net: J(β) = α‖β‖22 + (1− α)‖β‖1

Estimation returned by lasso (left) vs. ridge (right) Tibshirani (1996).



Which regularization is the best?

Feature selection (lasso, t-tests, ...) is popular, it leads to a limited
set of genes that form a molecular signatures
Ridge is less interpretable but often leads to better performance...
e.g., breast cancer prognosis (n = 286):184 Computational Systems Biology of Cancer
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FIGURE 6.4 Influence of signature size on breast cancer prognosis per-
formance. A regularised LR classifier using a signature of varying size is trained
on the Wang expression dataset to predict relapse within 5 years. The genes in the
signatures are selected either randomly, or by decreasing significance according to
a t-test. The performance is estimated by 5-fold cross-validation, averaged over 10
repeats. In this example, it is better to keep all genes to train the classifier.

notion of genomic grade to quantify tumour di↵erentiation (Sotiriou et al.,
2003; Loi et al., 2007). In addition to tumour di↵erentiation assessment, this
genomic grade was shown to be prognostic. Several prognostic molecular pre-
dictors have also been proposed, including the 76-gene MammaPrint R� sig-
nature developed at the Netherlands Cancer Institute in Amsterdam (van’t
Veer et al., 2002) and the 76-gene Rotterdam signature of Wang et al. (2005).
Investigators from the University of Texas M. D. Anderson Cancer Center
developed DLD30, a 30-gene signature to predict the response of a tumour
to preoperative chemotherapies (Hess et al., 2006). The Oncotype DX R� assay
combines the expression of 21 genes to evaluate the risk of relapse and the
benefits of chemotherapy for patients with early-stage, lymph node-negative,
ER+/HER2- breast cancers (Paik et al., 2006; Paik, 2007). Several of these
molecular predictors have reached the level of clinical trials, and are now being
tested on large cohorts of patients. We can already foresee their routine use
in the clinics within few years.

6.3.6 Pitfalls and challenges in biomarker discovery

Although an attractive strategy to improve the performance of predictive
modelling in high-dimension and simultaneously identify biologically relevant
markers, the automatic data-driven identification of new markers remains
challenging for several reasons.



Adding prior knowledge: network-based
regularizations

G = (V, E) a graph of genes (PPI, metabolic, signaling, regulatory
network...)
Prior knowledge:

β should be "smooth" on the graph?
Selected genes should be connected?



Examples of network-based regularizations

JG(β) =
∑
i∼j

(βi − βj)
2 (Rapaport et al., 2007)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

(βi − βj)
2 (Li and Li, 2008)

JG(β) = sup
α∈Rp : ∀i∼j α2

i +α
2
j ≤1

α>β (Jacob et al., 2009)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

|βi − βj | (Hoefling, 2010)



Gene selection with the graph lasso

JG(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β

Jacob et al. (2009)



BC prognosis: Lasso signature (accuracy 0.61)

Jacob et al. (2009)



BC prognosis: Graph Lasso signature (accuracy 0.64)

Jacob et al. (2009)



Outline

1 Regularize

2 Change representation



Somatic mutations in cancer

Stratton et al. (2009)



Large-scale efforts to collect somatic mutations

3,378 samples with survival information from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



Survival prediction from raw mutation profiles

Each patient is a binary vector: each gene is mutated (1) or not (2)
Silent mutations are removed
Survival model estimated with sparse survival SVM
Results on 5-fold cross-validation repeated 4 times



Approach: change representation?

Can we replace

x ∈ {0,1}p with p very large, very sparse

by a representation with more information shared between samples

Φ(x) ∈ H

that would allow better supervised and unsupervised classification?



NetNorm Overview (Le Morvan et al., 2017)
Take

H =

{
x ∈ {0,1}p :

p∑
i=1

xi = K

}
and use a gene network to transform x to φ(x) ∈ H by
adding/removing mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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NetNorm detail (k=4)

1 Add mutations for patients with few (less than K ) mutations

2 Results

2.1 Overview of NetNorM
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have mutations ’removed’ in their genes with lowest degree until they reach k mutations.

3

2 Remove mutations for patients for many (more than K ) mutations

2 Results

2.1 Overview of NetNorM
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In practice, K is a free parameter optimized on the training set, typically a few 100’s.



Related work (Hofree et al., 2013)
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Many forms of cancer have multiple subtypes with different 
causes and clinical outcomes. Somatic tumor genome sequences 
provide a rich new source of data for uncovering these 
subtypes but have proven difficult to compare, as two tumors 
rarely share the same mutations. Here we introduce network-
based stratification (NBS), a method to integrate somatic 
tumor genomes with gene networks. This approach allows for 
stratification of cancer into informative subtypes by clustering 
together patients with mutations in similar network regions. 
We demonstrate NBS in ovarian, uterine and lung cancer cohorts 
from The Cancer Genome Atlas. For each tissue, NBS identifies 
subtypes that are predictive of clinical outcomes such as 
patient survival, response to therapy or tumor histology. We 
identify network regions characteristic of each subtype and 
show how mutation-derived subtypes can be used to train  
an mRNA expression signature, which provides similar 
information in the absence of DNA sequence.

Cancer is a disease that is not only complex, i.e., driven by a com-
bination of genes, but also wildly heterogeneous, in that gene 
combinations can vary greatly between patients. To gain a bet-
ter understanding of these complexities, researchers involved 
in projects such as The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC) are systemati-
cally profiling thousands of tumors at multiple layers of genome-
scale information, including mRNA and microRNA expression, 
DNA copy number and methylation, and DNA sequence1–3. There 
is now a strong need for informatics methods that can integrate and 
interpret genome-scale molecular information to provide insight 
into the molecular processes driving tumor progression. Such 
methods are also of pressing need in the clinic, where the impact 
of genome-scale tumor profiling has been limited by the inability 
to derive clinically relevant conclusions from the data4,5.

One of the fundamental goals of cancer informatics is tumor 
stratification, whereby a heterogeneous population of tumors is 
divided into clinically and biologically meaningful subtypes as 
determined by similarity of molecular profiles. Most prior attempts 
to stratify tumors with molecular profiles have used mRNA expres-
sion data2,6–9, resulting in the discovery of informative subtypes 
in diseases such as glioblastoma and breast cancer. On the other 
hand, in TCGA cohorts including colorectal adenocarcinoma and 

Network-based stratification of tumor mutations
Matan Hofree1, John P Shen2, Hannah Carter2, Andrew Gross3 & Trey Ideker1–3

small-cell lung cancer, subtypes derived from expression profiles do 
not correlate with any clinical phenotype including patient survival 
and response to chemotherapy2,10. These results might be due to 
limitations of expression-based analysis11 such as issues with RNA 
sample quality, lack of reproducibility between biological replicates 
and ample opportunities for overfitting of data.

A promising new source of data for tumor stratification is the 
somatic mutation profile, in which high-throughput sequencing 
is used to compare the genome or exome of a patient’s tumor 
to that of the germ line to identify mutations that have become 
enriched in the tumor cell population12. As this set of mutations 
is presumed to contain the causal drivers of tumor progression13, 
similarities and differences in mutations across patients could 
provide invaluable information for stratification. Although indi-
vidual mutations in cancer genes have long been used to stratify 
patients14–17, stratification based on the entire mutation profile 
has been more challenging. Somatic mutations are fundamen-
tally unlike other data types such as expression or methylation, in 
which nearly all genes or markers are assigned a quantitative value 
in every patient. Instead, somatic mutation profiles are extremely 
sparse, with typically fewer than 100 mutated bases in an entire 
exome (Supplementary Fig. 1). They are also remarkably het-
erogeneous, such that it is very common for clinically identical 
patients to share no more than a single mutation2,18,19.

Here we report that these problems can be largely overcome 
by integrating somatic mutation profiles with knowledge of 
the molecular network architecture of human cells. It is widely 
appreciated that cancer is a disease not of individual mutations, 
nor of genes, but of combinations of genes acting in molecular 
networks corresponding to hallmark processes such as cell pro-
liferation and apoptosis20,21. We postulated that, although two 
tumors may not have any mutations in common, they may share 
the networks affected by these mutations (as per Waddington’s 
original theory of ‘genetic canalization’22). Although current  
cancer pathway maps are incomplete, much relevant information 
is available in public databases of human protein-protein, func-
tional and pathway interactions. An increasing number of studies 
have successfully integrated these network databases with tumor 
molecular profiles to map the molecular pathways of cancer23–27.  
Here we focus on the orthogonal problem of using network 
knowledge to stratify a cohort into meaningful subsets. Using this  
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

RESULTS
Overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 
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Figure 1 | Overview of network-based stratification (NBS). (a) Flowchart of the approach. (b) Example illustrating smoothing of patient somatic mutation profiles 
over a molecular interaction network. Mutated genes are shown in yellow (patient 1) and blue (patient 2) in the context of a gene interaction network. Following 
smoothing, the mutational activity of a gene is a continuous value reflected in the intensity of yellow or blue; genes with high scores in both patients appear 
in green (dashed oval). (c) Clustering mutation profiles using non-negative matrix factorization (NMF) regularized by a network. The input data matrix (F) is 
decomposed into the product of two matrices: one of subtype prototypes (W) and the other of assignments of each mutation profile to the prototypes (H). The 
decomposition attempts to minimize the objective function shown, which includes a network influence constraint L on the subtype prototypes. k, predefined 
number of subtypes. (d) The final tumor subtypes are obtained from the consensus (majority) assignments of each tumor after 1,000 applications of the 
procedures in b and c to samples of the original data set. A darker blue color in the matrix coincides with higher co-clustering for pairs of patients.
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Results
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NSQN = Network Smoothing / Quantile Normalization (Hofree et al., 2013)



Conclusion

Lots of data, increasing role of ML (particularly with images, texts)
Omics data is more challenging
Getting more data is important, but unlikely to allow ML-based
methods to reach their best
Active research

allowing data sharing (federated learning, differential privacy, ...)
new representations x → Φ(x)
new learning techniques (structured sparsity, regularization, ...)
new experimental design strategies (contextual bandit, ...)
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