
Machine learning on the symmetric group

Jean-Philippe Vert



ML



ML



ML



ML



What if inputs are permutations?

Permutation: a bijection

σ : [1,N]→ [1,N]

σ(i) = rank of item i
Composition

(σ1σ2)(i) = σ1(σ2(i))

SN the symmetric group
|SN | = N!



Examples

Ranking data

Ranks extracted from data

(histogram equalization, quantile normalization...)



Examples

Batch effects, calibration of experimental measures



Learning from permutations

Assume your data are permutations and you want to learn

f : SN → R

A solutions: embed SN to a Euclidean (or Hilbert) space

Φ : SN → Rp

and learn a linear function:

fβ(σ) = β>Φ(σ)

The corresponding kernel is

K (σ1, σ2) = Φ(σ1)>Φ(σ2)



How to define the embedding Φ : SN → Rp ?

Should encode interesting features
Should lead to efficient algorithms

Should be invariant to renaming of the items, i.e., the kernel
should be right-invariant

∀σ1, σ2, π ∈ SN , K (σ1π, σ2π) = K (σ1, σ2)



Harmonic analysis on SN

A representation of SN is a matrix-valued function ρ : SN → Cdρ×dρ

such that
∀σ1, σ2 ∈ SN , ρ(σ1σ2) = ρ(σ1)ρ(σ2)

A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations
SN has a finite number of irreps {ρλ : λ ∈ Λ} where Λ = {λ ` N}1
is the set of partitions of N
For any f : SN → R, the Fourier transform of f is

∀λ ∈ Λ , f̂ (ρλ) =
∑

σ∈SN

f (σ)ρλ(σ)

1λ ` N iff λ = (λ1, . . . , λr ) with λ1 ≥ . . . ≥ λr and
∑r

i=1 λi = N



Right-invariant kernels

Bochner’s theorem
An embedding Φ : SN → Rp defines a right-invariant kernel
K (σ1, σ2) = Φ(σ1)>Φ(σ2) if and only there exists φ : SN → R such that

∀σ1, σ2 ∈ SN , K (σ1, σ2) = φ(σ−1
2 σ1)

and
∀λ ∈ Λ , φ̂(ρλ) � 0



Some attempts

SUQUAN	Kendall	

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)



SUQUAN embedding (Le Morvan and Vert, 2017)

Let Φ(σ) = Πσ the permutation representation (Serres, 1977):

[Πσ]ij =

{
1 if σ(j) = i ,
0 otherwise.

Leads to new approaches for supervised quantile normalization
(SUQUAN) and vector quantization



SUQUAN = SUpervised QUANtile normalization

Suppose σ = rank(x) with x ∈ RN

Rank-1 linear model on Πσ:

f (σ) =< Πσ,M >Frobenius with M = fw>

Then
f (σ) =< Πσ, fw> >Frobenius= w>Π>σ f

Π>σ f is the quantile normalization of x with target quantile f
Learn M amounts to learning both the linear model w and the
target quantile f



Example: CIFAR-10

Discriminate images of horse vs. plane
Different methods learn different quantile functions

original median SVD SUQUAN BND
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Limits of the SUQUAN embedding

Linear model on Φ(σ) = Πσ ∈ RN×N

Captures first-order information of the form "i -th feature ranked at
the j-th position"
What about higher-order information such as "feature i larger than
feature j"?



The Kendall embedding (Jiao and Vert, 2015, 2017)

Φi,j(σ) =

{
1 if σ(i) < σ(j) ,
0 otherwise.



Geometry of the embedding

For any two permutations σ, σ′ ∈ SN :
Inner product

Φ(σ)>Φ(σ′) =
∑

1≤i 6=j≤n

1σ(i)<σ(j)1σ′(i)<σ′(j) = nc(σ, σ′)

nc = number of concordant pairs
Distance

‖Φ(σ)− Φ(σ′) ‖2 =
∑

1≤i,j≤n

(1σ(i)<σ(j) − 1σ′(i)<σ′(j))2 = 2nd (σ, σ′)

nd = number of discordant pairs



Kendall and Mallows kernels

The Kendall kernel is

Kτ (σ, σ′) = nc(σ, σ′)

The Mallows kernel is

∀λ ≥ 0 K λ
M(σ, σ′) = e−λnd (σ,σ′)

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions



Remark

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(N2N))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(N log N)



Applications
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Higher-order kernels (Jiao and Vert, 2018)

Φ(σ) = Π⊗d
σ

For d = 1, this is the SUQUAN embedding
For d = 2, this leads to a new weighted Kendall kernel, where
weights can optimized during training



Conclusion

SUQUAN	Kendall	

Machine learning beyond vectors, strings and graphs
Different embeddings of the symmetric group
Scalability? Robustness to adversarial attacks? Differentiable
embeddings?

MERCI!
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The quantile normalization (QN) embedding

Data: permutation σ ∈ SN where σ(i)= rank of item/feature i
Fix a target quantile q ∈ RN

Define Φq : SN → RN by

∀σ ∈ SN , [Φq(σ)]i = qσ(i)

"Keep the order, change the values"



How to choose a "good" target distribution?



SUQUAN (Le Morvan and Vert, 2017)

Learn after standard QN:
1 Fix q arbitrarily
2 QN all samples to get Φq(σ1), . . . ,Φq(σn)
3 Learn a model on normalized data, e.g.:

β̂ = argmin
β∈RN

{
1
n

n∑

i=1

`i

(
β>Φq(σi)

)
+ λ‖β‖2

}

Supervised QN (SUQUAN): jointly learn q and the model:

(
β̂, q̂

)
= argmin

β,q∈RN

{
1
n

n∑

i=1

`i

(
β>Φq(σi)

)
+ λ‖β‖2 + γΩ(q)

}
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+ λ‖β‖2

}

Supervised QN (SUQUAN): jointly learn q and the model:
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Computing Φq(σ)

For σ ∈ SN let the permutation representation (Serres, 1977):

[Πσ]ij =

{
1 if σ(j) = i ,
0 otherwise.

Then
Φq(σ) = Π>σ q



Linear SUQAN as rank-1 matrix regression

Linear SUQUAN therefore solves

min
β,q∈RN

{
1
n
`i

(
β>Φq(σi)

)
+ λ‖β‖2 + γΩ(q)

}

= min
β,q∈RN

{
1
n
`i

(
β>Π>σi

q
)

+ λ‖β‖2 + γΩ(q)

}

= min
β,q∈RN

{
1
n
`i

(
< qβ>,Πσi >Frobenius

)
+ λ‖β‖2 + γΩ(q)

}

A particular linear model to estimate a rank-1 matrix M = qβ>

Each sample σ ∈ SN is represented by the matrix Πσ ∈ Rn×n

Non-convex
Alternative optimization of f and w is easy



Experiments: CIFAR-10

Image classification into 10 classes (45 binary problems)
N = 5,000 per class, p = 1,024 pixels
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Experiments: CIFAR-10

Example: horse vs. plane
Different methods learn different quantile functions

original median SVD SUQUAN BND
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Outline

1 The Kendall embedding



Limits of the QN embedding

Linear model on Φ(σ) = Πσ ∈ RN×N

Captures first-order information of the form "i -th feature ranked at
the j-th position"
What about higher-order information such as "feature i larger than
feature j"?



Another representation

Φi,j(σ) =

{
1 if σ(i) < σ(j) ,
0 otherwise.



Kendall and Mallows kernels

The Kendall kernel is

Kτ (σ, σ′) = Φ(σ)>Φ(σ′)

The Mallows kernel is

∀λ ≥ 0 K λ
M(σ, σ′) = e−λ‖Φ(σ)−Φ(σ′) ‖2

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite and can be
evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions



Proof

For any two permutations σ, σ′ ∈ SN :
Inner product

Φ(σ)>Φ(σ′) =
∑

1≤i 6=j≤N

1σ(i)<σ(j)1σ′(i)<σ′(j) = nc(σ, σ′)

nc = number of concordant pairs
Distance

‖Φ(σ)− Φ(σ′) ‖2 =
∑

1≤i,j≤N

(1σ(i)<σ(j) − 1σ′(i)<σ′(j))2 = 2nd (σ, σ′)

nd = number of discordant pairs
nc and nc can be computed in O(N log N) (Knight, 1966)



Related work

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(N2N))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(N log N)



Applications
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Constraints on f

Ridge

F0 =

{
f ∈ Rp :

1
p

p∑

i=1

f 2
i ≤ 1

}
.

Non-decreasing

FBND = F0 ∩ I0 , where I0 = {f ∈ Rp : f1 ≤ f2 ≤ . . . ≤ fp}

Non-decreasing and smooth

FSPAV =



f ∈ I0 :

p−1∑

j=1

(fj+1 − fj)2 ≤ 1



 .



SUQUAN-BND and SUQUAN-PAVA

5.2 SUQUAN-BND and SUQUAN-SPAV
We now focus on approximate algorithms to solve (8) in the case where F = FBND or F = FSPAV . Using
the biconvexity of (8) in w and f , we propose an alternate optimisation scheme in w and f . Algorithm 2
summarises the procedure. Starting from an initial non-decreasing target quantile finit 2 I0, it outputs a
new target quantile f obtained by minimising once (8) in w for f = finit fixed, then minimising in f for w
fixed. Each alternative optimisation is particularly simple and efficient. For a given f , the optimisation in
(w, b) amounts to solving a standard linear model optimisation over the samples (⇧x1

f, . . . ,⇧xn
f). For a

given w, the optimisation in f differs according to the regularisation type. With FBND, the optimisation
in f is an isotonic optimisation problem (because of the constraints in FBND that entries in f should be
non-decreasing) involving the samples

�
⇧>

x1
w, . . . ,⇧>

xn
w
�
, which we solve by accelerated proximal gradient

optimisation, borrowing the pool adjacent violators algorithm (PAVA, [2]) as proximal operator to project
onto the set of monotonically increasing vectors in O(p). With FSPAV, this is a smoothed isotonic optimisation
problem via `2 regularisation. Again, we solve this problem by accelerated proximal gradient optimisation
but this time borrowing the Smoothed Pool Adjacent Violators (SPAV, [28]) as proximal operator which
costs O(p2) operations; in this case we solve a penalised version (as opposed to a constrained version) of the
problem, inducing a second regularisation parameter �. Interestingly, the computation of each matrix-vector
products ⇧xi

f and ⇧>
xi

w before each alternative optimisation is just an O(p) operation, after the sample
xi has been sorted once at the first iteration in O(p ln(p)). Indeed, for a given x, if we note order(x) the
permutation which rearranges the entries of x in increasing order, and rank(x) the ranks of the entries of x,
then we simply have (⇧xf)j = frank(x)j

and (⇧>
x w)j = worder(x)j

, for j = 1, . . . , p, which we simply denote
as ⇧xf = f [rank(x)] and ⇧>

x w = w[order(x)] in Algorithm 2. Note that the procedure can be iterated to
produce a sequence of target quantiles although we found in our experiments below that the performance did
not change significantly after the first iteration. Note also that, contrary to SUQUAN-SVD, this algorithm
requires an initial non-decreasing target quantile function. By default we suggest to use the median of the
data quantile functions, which is often the default used in standard QN normalisation.

Algorithm 2: SUQUAN-BND and SUQUAN-SPAV
Input: (x1, y1), . . . , (xn, yn), finit 2 I0, � 2 R
Output: f 2 I0 target quantile
1: for i = 1 to n do
2: ranki, orderi  sort(xi)
3: end for
4: w, b argmin

w,b

1
n

Pn
i=1 `i

�
w>finit[ranki] + b

�
+ �||w||2

(standard linear model optimisation)
5: f  argmin

f2FBND

1
n

Pn
i=1 `i

�
f>w[orderi] + b

�

(isotonic optimisation problem using PAVA as prox)
OR
f  argmin

f2FSP AV

1
n

Pn
i=1 `i

�
f>w[orderi] + b

�

(smoothed isotonic optimisation problem using SPAV as prox)

6 Experiments

6.1 Simulated data
We first test the ability of SUQUAN to overcome unwanted changes in quantile distributions on simulated
datasets. For that purpose we fix f 2 Rp to be the quantile distribution of the normal distribution, and
simulate each sample x1, . . . , xn 2 Rp by randomly permuting the entries of f . We then generate binary
labels y1, . . . , yn 2 {�1, 1} using the logistic model P (Y = 1 | X = x) = 1

1+exp(�w>x)
, where w is randomly

sampled from a standard multivariate normal distribution. We then compare four methods to estimate w
from n observations:

6

Alternate optimization in w and f , monotonicity constraint on f
Accelerated proximal gradient optimization for f , using the Pool
Adjacent Violators Algorithm (PAVA, Barlow et al. (1972)) or the
Smoothed Pool Adjacent Violators algorithm (SPAV, Sysoev and
Burdakov (2016)) as proximal operator.



A variant: SUQUAN-SVD

(i, j)-th entry equal to 1 whenever the i-th entry of x is smaller than the j-th entry, and showed how
Frobenius-norm regularised linear models can be estimated efficiently thanks to the kernel trick because
the inner product between two p⇥ p matrices corresponding to two vector embeddings can be computed
in O(p ln(p)) with an efficient implementation of the Kendall ⌧ statistics. It can be observed that the
permutation representation  used by SUQUAN is also trivially amenable to benefit from the kernel
trick: to compute the inner product between  (x) and  (x0) for two vectors x and x0, one just needs
to sort the entries of each vector independently, in O(p ln(p)), and count in O(p) how many entries are
ranked at the same position. However, the permutation representation is extremely sparse (p non-zero
values among p(p� 1) zeros) and only controlling the Frobenius norm of M (in order to benefit from
the kernel trick) may not be sufficient to fight possible overfitting.

• M is not a convex set, and SUQUAN is therefore not a convex optimisation problem. A possible
variant of SUQUAN would be to relax the rank constraint and replace it for example by a trace norm
constraint, which is known to be a natural convex surrogate for the rank [27].

5 Algorithms
The SUQUAN formulation (8) is a nonconvex optimisation problem since the set of rank-1 matrices M is not
convex. To approximatively solve it, we now propose two strategies. The first one, SUQUAN-SVD, does not
really attempt to solve (8) but instead to directly find a good target quantile f 2 F0 for binary classification
problems. The second one aims to find an approximate solution to (8) by performing alternate optimisation
in f and w, as the problem is biconvex.

5.1 SUQUAN-SVD

Algorithm 1: SUQUAN-SVD
Input:

(x1, y1), . . . , (xn, yn) 2 Rp ⇥ {�1, 1}
Output: f 2 F0 target quantile
1: MLDA  0 2 Rp⇥p

2: n+1  |{i : yi = +1}|
3: n�1  |{i : yi = �1}|
4: for i = 1 to n do
5: Compute ⇧xi

(by sorting xi)
6: MLDA  MLDA + yi

nyi
⇧xi

7: end for
8: (�, w, f) SV D(MLDA, 1)

In the case where F = F0, i.e., when we do not constrain
f to be non-decreasing, and ⌦(�) = ||�||2, then the set M
of candidate matrices in (8) is exactly the set of rank-1 ma-
trices. In that case, (8) amounts to finding a rank-1 matrix
that approximatively solves a linear regression or classifica-
tion problem. Let us consider the binary classification setting,
when the training set is composed of pairs (xi, yi)i=1,...,n with
yi 2 {�1, +1}. In that case, a simple linear classifier (without
rank constraint) is the one obtained by linear discriminant
analysis with identity covariance: MLDA = µ+ � µ�, where
µ+ and µ� are respectively the means of the matrices ⇧xi for
the positive and negative classes. Consequently, a good rank-
1 candidate classifier is the closest rank-1 matrix to MLDA,
namely u�v> where u and v are the left and right singular
vectors of MLDA associated to the largest singular value �.
Hence we recover a target quantile function by keeping only
the first right singular vector of MLDA, which can then be used as target quantile for quantile normalising
the training points before running any linear classification method. Algorithm 1 summarises the method.
Computing ⇧xi

on line 5 involves an O(p ln(p)) sorting of the entries of xi, and therefore computing MLDA,
which is a linear combination of n permutation matrices, requires O(np ln(p)) operations. Then computing
the right largest singular vector (line 8) of MLDA typically costs another O(p2) operations using a naive
power iteration method. However, if n  p, we can exploit the fact that the product of a permutation matrix
by a vector is just an O(p) operation (just order the vector according to the permutation), so that the power
iteration to compute the first singular vector only takes O(np). Computing the right largest singular vector
therefore has an O(min(p2, np)) complexity. Hence the complexity of SUQUAN-SVD is O(np ln(p)), which is
the same as the complexity of the quantile normalisation.

5

Ridge penalty (no monotonicity constraint), equivalent to rank-1
regression problem
SVD finds the closest rank-1 matrix to the LDA solution:

MLDA =
1

n+

∑

i : yi =+1

Πxi −
1

n−

∑

i : yi =+1

Πxi

Complexity O(np ln(p)) (same as QN only)



Experiments: Simulations

True distribution of X entries is normal
Corrupt data with a cauchy, exponential, uniform or bimodal
gaussian distributions.
p = 1000, n varies, logistic regression.
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	The Kendall embedding

