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Motivation

W ith 2.8 million new cases diagnosed annually in the
United States1, basal cell carcinoma (BCC) is the
most common cancer worldwide and contributes

substantially to morbidity. BCC risk has been associated with
ultraviolet (UV) exposure, fair skin, arsenic exposure, ionizing
radiation, chronic immunosuppression, male gender and age1.
Since 2008, six population-based genome-wide association studies
(GWAS) of BCC have been reported identifying 16 regions
of susceptibility2–7. Candidate gene studies have identified five
additional pigmentation loci associated with BCC, including
IRF4, SLC45A2, RALY, TYR and OCA27. Here, we report the
largest-to-date two-stage genome-wide association meta-analysis
for BCC totalling 17,187 cases and 287,054 controls. The results
of this study confirm 12 of 16 loci from prior GWAS, along with
5 of 5 loci from previous candidate gene studies, and identify
14 novel susceptibility loci for BCC.

Results
Stage 1 consisted of 12,945 self-reported BCC cases and 274,252
controls of European ancestry from 23andMe research partici-
pants (Supplementary Table 1). Validation of self-reported
surveys with adjudicated medical records revealed a sensitivity
and specificity of 93% and 99%, respectively (Supplementary
Table 2), indicating a misclassification rate of less than 10%.
Simulation analysis demonstrated that this misclassification rate
only modestly reduced the power to detect associations in this
study (Supplementary Fig. 1). Stage 2 consisted of an independent
GWAS cohort of 4,242 BCC cases and 12,802 controls of
European ancestry from the Nurses’ Health Study and Health
Professionals Follow-Up Study (Supplementary Table 1). Subse-
quently, meta-analysis of stages 1 and 2 was performed, encom-
passing 17,187 cases and 287,054 controls (Supplementary
Table 1). Further information on methodology and imputation
quality control is presented in the Online Methods, Supple-
mentary Tables 3-5, and Supplementary Figs 2–7.

Stage 1 analysis. Twenty-eight index single nucleotide poly-
morphisms (SNPs) were associated with BCC at the genome-wide
significance level (Po5.0! 10" 8, logistic regression) in stage 1
and are depicted in the Manhattan plot (Fig. 1). Subset analysis
revealed relatively consistent effect sizes across age and gender for
these 28 SNPs (Supplementary Tables 6–7, Supplementary Fig. 8).

Interestingly, slightly larger effect sizes tended to occur in
younger cases, suggesting that other risk factors may play an
increasing role with age. As 10% of the BCC cases in our stage 1
cohort subsequently developed melanoma, we also investigated
whether the co-occurrence of melanoma contributed to the
observed associations with BCC risk. We therefore computed
association tests for the stage 1 index SNPs in BCC cases with and
without melanoma. All 28 SNPs displayed consistent effect sizes
across the two groups (Table 1, Supplementary Fig. 9), indicating
that they are independently associated with BCC susceptibility.

Stage 2 and combined meta-analysis. Twenty of the 28 index
SNPs were replicated in the stage 2 analysis (Po0.05, logistic
regression). While some loci did not reach statistical significance
in stage 2, their 95% confidence intervals (for odds ratios)
overlapped with the corresponding stage 1 confidence intervals.
Meta-analysis of stages 1 and 2 identified a total of 31 loci
reaching genome-wide significance (Po5! 10" 8, logistic
regression) for association with BCC. Among these 31 loci, 17 are
previously reported (Supplementary Tables 8–12). The remaining
14 are novel BCC susceptibility loci (Table 2, Supplementary
Table 13). Forest plots and regional association plots for these
14 SNPs are provided in Supplementary Figs 10–12. Of these 14
novel risk variants, 10 reached genome-wide significance in
stage 1 and 4 reached genome-wide significance in the combined
meta-analysis. As many pigmentation loci have been associated
with BCC susceptibility, we adjusted for pigmentation phenotype
in our stage 2 cohort and did not observe a significant difference
between adjusted and unadjusted results for the 14 novel risk
variants (Supplementary Table 14).

Heritability of BCC and gene expression analysis. To measure
the proportion of BCC heritability that can be attributed to these
SNPs, we calculated the familial relative risk for BCC as outlined
by the Cancer Oncological Gene-Environment Study. Overall,
10.98% of familial relative risk for BCC is explained by the 31
genome-wide significant loci; of this percentage, the 14 novel
susceptibility loci account for 2.62%. To further explore the role
of these 14 loci in BCC pathogenesis, we evaluated expression
levels of nearby genes in BCC tissue using two data sets from the
Gene Expression Omnibus (GEO) (GSE53462 and GSE7553).
Three loci demonstrated significant differential gene expression
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Figure 1 | Manhattan plot of stage 1 GWAS analysis of BCC from 23andMe data set. Total stage 1 GWAS analysis included 12,945 cases and 274,252
controls. Loci with smallest Po10"6 (28 total, logistic regression) are labelled with the name of the nearest gene. Positions with Po5! 10" 8 (genome-
wide significance) are shown in red. In stage 1, ten novel BCC susceptibility loci reached genome-wide significance after adjusting for genomic control, all of
which are labelled in the figure with asterisks: from left to right, 3p13 (FOXP1), 3q28 (LPP), 6p21.32 (HLA-DQA2), 6p21.33 (HLA-B), 7p12.3 (TNS3), 7q22.1
(CUX1), 8q21.13 (ZBTB10), 9p22.2 (near BNC2), 19p13.3 (PLIN3), 21q22.3 (LINC00111). Four additional novel susceptibility loci—6p21.3 (NEU1), 10q24.3
(OBFC1), 6q27 (MIR3939), 6p22.3 (CASC15)—were genome-wide significant in the overall meta-analysis (Table 2) and thus are not labelled in the figure.
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Nonlinear feature selection to identify genes

Followed by valid statistical inference (P-value, confidence interval for
association...)
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Challenge: file drawer effect (aka publication bias)

Typical lab experiment :

Measurement of n different variables of interest (Yi )i=1,···,n. Each
variable is normally distributed, Yi ∼ N (µi , σ

2).

Since we are interested in large effects, we only select such ones, e.g.:

Î =

{
i ∈ {1, · · · , n} s. t.|Yi | > 1

}
Hypothesis testing for H0 : µi = 0, ∀i ∈ Î

Reject H0, if |Yi | > 1.96 (confidence interval for α = 0.05) ?

Wrong !
More than 5% of hypothesis will be rejected under H0

Proper way: condition on the selection event,

P (|Yi | > Lα | |Yi | > 1) = 0.05⇒ Lα = 2.41 > 1.96
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Post-selection inference (PSI)

Observe data Y

Select model M̂ which depends on Y

e.g., a subset of features for sparse regression

Derive the distribution of a statistics of interest SM̂(Y ) conditionally

on M̂(Y ) = M̂

e.g., weight of a given feature i ∈ M̂ in a linear regression model
restricted to M̂
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Example: PSI for lasso regression (Lee et al., 2016)

β̂ ∈ arg min
β
||y − Xβ||22+λ||β||1 , M̂ = {i : β̂i 6= 0}

For any M,

{y : M̂(y) = M} = ∪s{y : A(M, s)y ≤ b(M, s)}

Statistics of the form η>
M̂
y

Polyhedral lemma: if Y = µ+ σ2I , then for any vector η,

F
[V−,V+]
η>µ,σ2η>η

(η>Y )|{AY ≤ b} ∼ Unif (0, 1),

where F
[a,b]
µ,σ2 is the c.d.f of a truncated Gaussian distribution, and

V−,V+ are constants that are functions of η,A, b.
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Objective

Extend PSI to nonlinear feature selection. For that:

1 Define nonlinear association scores s(i , y) between feature(s) i and
outcome y

2 Define a procedure to select a group of features M̂

3 Characterize {y : M̂ = M}
4 Deduce PSI distribution of a statistics of interest

7 / 21



Kernels

Instead of ”features”, we assume a collection of kernels K1, . . .KS

Includes linear setting when Ki is the linear kernel on the i-th feature

Generalize to nonlinear feature selection when Ki is a nonlinear kernel
on the i-th features

Generalization to non-numeric features

Generalization to group selection
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Association based on prototypes

s(K ,Y ) = ‖ŶK‖2,
where ŶK = H(K )Y is called a prototype for a ”hat” function
H : Rn×n → Rn×n (Reid et al., 2017).

Kernel principal component regression (KPCR)

Hproj(K ) = KK+ =
r∑

i=1

uiu
>
i ,

where u1, . . . , ur are the eigenvectors of K with nonzero eigenvalues
(Loftus and Taylor, 2015).
Kernel principal component regression (KPCR) for some R < r :

HKPCR(K ) =
R∑
i=1

uiu
>
i

Kernel ridge regression (KRR) for some λ > 0

HKRR(K ) = K (K + λI )−1
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Association based on HSIC

Take s(K ,Y ) = ĤSIC(K ,YY>) with one empirical estimator of HSIC
(Gretton et al., 2005):

ĤSICbiased(K , L) =
1

(n − 1)2
trace(KΠnLΠn),

ĤSICunbiased(K , L) =
1

n(n − 3)

[
trace(K L)

+
1Tn K1n 1Tn L1n
(n − 1)(n − 2)

− 2

n − 2
1Tn K L1n

]
,

where Πn = In×n − 1
n1n1>n , K = K − diag(K ) and L = L− diag(L).
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Quadratic association

Theorem

All aforementioned assocation scores are quadratic kernel association
score, i.e., functions s : Rn×n × Rn 7→ R of the form

s(K ,Y ) = Y>Q(K )Y ,

for a Gram matrix K and some function Q : Rn×n 7→ Rn×n.

Q(K ) is positive semidefinite for all but ĤSICunbiased
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Stepwise kernel selection: selection strategies

For a fixed number of selected kernels S ′, we can deploy the following
kernel selection strategies

Filtering: we compute the scores s(K ,Y ) for all candidate kernels
K ∈ K, and select among them the top S ′ with the highest scores.

Forward stepwise selection (Song et al., 2007): we start from an
empty list of kernels, and iteratively add new kernels one by one in
the list by picking the one that leads to the largest increase in
association score when combined with the kernels already in the list.

Backward stepwise selection (Song et al., 2007): we start from the
full list of kernels, and iteratively remove the one that leads to the
smallest decrease in association score.

For the adaptive equivalents, S ′ is automatically selected in a data-driven
fashion. We maximize over S ′ the association score at each step.
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Stepwise kernel selection: selection event

Theorem

Given a set of kernels K = {K1, . . . ,KS}, a quadratic kernel association
score s, and a method for kernel selection discussed above (filtering,
forward or backward stepwise selection, adaptive or not), let M̂(Y ) ⊆ K
be the subset of kernels selected given a vector of outcomes Y ∈ Rn. For
any M ⊆ K, there exists iM ∈ N, and
(QM,1, bM,1), . . . , (QM,iM , bM,iM ) ∈ Rn×n × R such that

{Y : M̂(Y ) = M} =

iM⋂
i=1

{Y : Y>QM,iY + bM,i ≥ 0}.
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Statistical inference

Model Y = µ+ σ2ε and test:

s(K , µ) = 0 for K ∈ M̂ or K =
∑

K ′∈M̂ K ′ (Yamada et al., 2018)

s
(∑

K ′∈M̂ K ′, µ
)

= s
(∑

K ′∈M̂,K ′ 6=K K ′, µ
)

(Loftus and Taylor, 2015;

Yang et al., 2016)

Model Y = µ+ θŶ + σ2ε and test θ = 0 (Reid et al., 2017)

Besides a few cases, we need to computed empirical p-values,

by approximating the distribution of the test statistic,

by generating replicates of Y within the acceptance region
{Y : M̂(Y ) = M}.
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Constrained sampling

A simple rejection sampling algorithm is cumbersome for small
acceptance regions in high-dimensional spaces

The Hamiltonian Monte-Carlo algorithm from Pakman and Paninski
(2014) is difficult to scale

Closest thing in the literature: the Hypersphere Direction (Berbee
et al., 1987): truncated uniform distributions on bounded space
regions

To make it work, a smart trick is to use the c.d.f F of Y (see paper for
details)
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Experiments: statistical validity

X an 100× 50 design matrix

The features are partitioned in
S = 10 disjoint and
mutually-independent subgroups
of p′ = 5 features.

Within each group, we sample
from normal distribution centered
at 0 and with a covariance matrix
Vij = ρ|i−j|

Y = θK1:3U1 + ε, where
K1:3 = K1 + K2 + K3, U1 is the
eigenvector corresponding to the
largest eigenvalue of K1:3

θ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
X is fixed, but Y is resampled
1000 times to create 1000
simulations.
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Experiments: benchmarking

We benchmark against the following
methods

protoLasso: the original, linear
prototype method for PSI with
L1-penalized regression Reid
et al. (2017);
protoOLS: a selection-free OLS
prototype
protoF: a classical
goodness-of-fit F-test for the
OLS prototype
KPCR, KRR, and HSIC: the
non-selective alternatives to
our kernelPSI procedure.
SKAT (Wu et al., 2011): a
non-selective quadratic kernel
association score.
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Conclusion

Nonlinear feature selection with valid PSI.

Open questions: better association measures for nonlinear variable
selection, constrained sampling, PSI beyond linear models, large-scale
kernel methods, MKL.

https://github.com/EpiSlim/kernelPSI
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