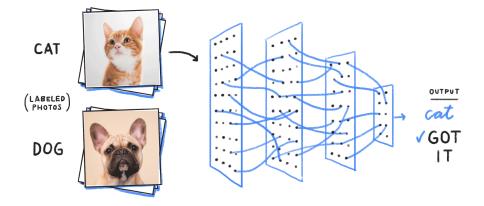
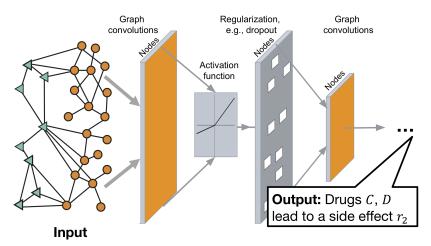
Learning from ranks, learning to rank

Jean-Philippe Vert

Differentiable programming

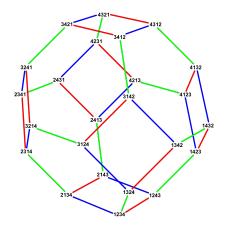


Beyond images and strings



http://snap.stanford.edu/decagon

What if inputs or outputs are permutations?



- Permutation: a bijection
 - $\sigma: [\mathbf{1}, \mathbf{N}] \to [\mathbf{1}, \mathbf{N}]$
- $\sigma(i) = \text{rank of item } i$
- Composition

 $(\sigma_1\sigma_2)(i) = \sigma_1(\sigma_2(i))$

• \mathbb{S}_N the symmetric group

•
$$|\mathbb{S}_N| = N!$$

Examples

Rankings (as input or output)

• Discretization / normalization of continuous data

(histogram equalization, quantile normalization...)

Goals

Permutations as input / intermediate:

$$\sigma \in \mathbb{S}_{N} \mapsto f_{\theta}(\sigma) \in \mathbb{R}^{p}$$

How to define / optimize $f_{\theta} : \mathbb{S}_N \to \mathbb{R}^p$?

 SUQUAN (Le Morvan and Vert, 2017), Kendall (Jiao and Vert, 2015, 2017, 2018)

Permutations as intermediate / output:

$$oldsymbol{x} \in \mathbb{R}^{oldsymbol{N}} \mapsto \sigma(oldsymbol{x}) \in \mathbb{S}_{oldsymbol{N}} \mapsto f_{ heta}(\sigma(oldsymbol{x})) \in \mathbb{R}^{oldsymbol{
ho}}$$

How to differentiate the ranking operator $\sigma : \mathbb{R}^N \to \mathbb{S}_N$? Sinkhorn ranking (Cuturi et al., 2019)

Assume your data are permutations and you want to learn

 $f: \mathbb{S}_N \to \mathbb{R}$

• A solutions: embed S_N to a Euclidean (or Hilbert) space

$$\Phi:\mathbb{S}_N\to\mathbb{R}^p$$

and learn a linear function:

$$f_{\beta}(\sigma) = \beta^{\top} \Phi(\sigma)$$

• The corresponding kernel is

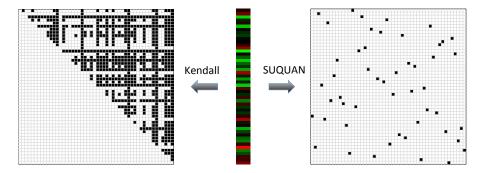
$$K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^\top \Phi(\sigma_2)$$

- Should encode interesting features
- Should lead to efficient algorithms

 Should be invariant to renaming of the items, i.e., the kernel should be right-invariant

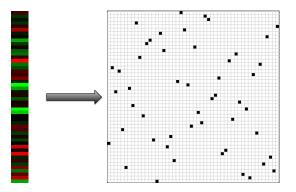
$$\forall \sigma_1, \sigma_2, \pi \in \mathbb{S}_N, \quad K(\sigma_1 \pi, \sigma_2 \pi) = K(\sigma_1, \sigma_2)$$

Some attempts



(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)

SUQUAN embedding (Le Morvan and Vert, 2017)



• Let $\Phi(\sigma) = \Pi_{\sigma}$ the permutation representation (Serres, 1977):

$$[\Pi_{\sigma}]_{ij} = \begin{cases} 1 & \text{if } \sigma(j) = i, \\ 0 & \text{otherwise.} \end{cases}$$

Right invariant:

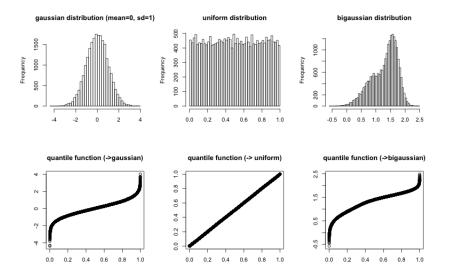
$$<\Phi(\sigma),\Phi(\sigma')>=\operatorname{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'}^{\top}\right)=\operatorname{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'}^{-1}\right)=\operatorname{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'^{-1}}\right)=\operatorname{Tr}\left(\Pi_{\sigma\sigma'^{-1}}\right)$$

Link with quantile normalization (QN)

- Take $\sigma(x) = \operatorname{rank}(x)$ with $x \in \mathbb{R}^N$
- Fix a target quantile $f \in \mathbb{R}^n$
- "Keep the order of x, change the values to f"

$$[\Psi_f(x)]_i = f_{\sigma(x)(i)} \quad \Leftrightarrow \quad \Psi_f(x) = \prod_{\sigma(x)} f$$

How to choose a "good" target distribution?



Supervised QN (SUQUAN)

Standard QN:

- Fix *f* arbitrarily
- **2** QN all samples to get $\Psi_f(x_1), \ldots, \Psi_f(x_N)$
- Learn a model on normalized data, e.g.:

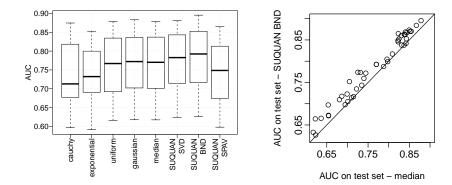
$$\min_{\theta} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\theta}(\Psi_f(x_i)) \right) \right\}$$

SUQUAN: jointly learn f and the model:

$$\min_{\theta,f} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\theta}(\Psi_f(x_i)) \right) \right\} = \min_{\theta,f} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\theta}(\Pi_{\sigma(x_i)} f) \right) \right\}$$

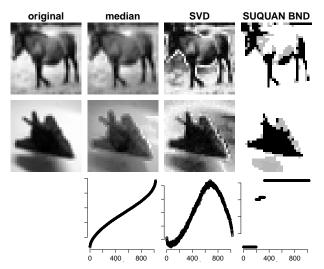
Experiments: CIFAR-10

- Image classification into 10 classes (45 binary problems)
- *N* = 5,000 per class, *p* = 1,024 pixels
- Linear logistic regression on raw pixels

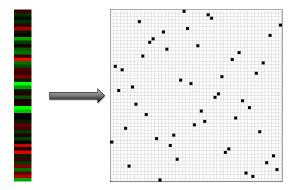


Experiments: CIFAR-10

- Example: horse vs. plane
- Different methods learn different quantile functions

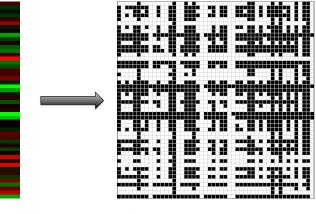


Limits of the SUQUAN embedding



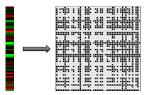
- Linear model on $\Phi(\sigma) = \Pi_{\sigma} \in \mathbb{R}^{N \times N}$
- Captures first-order information of the form "*i-th feature ranked at the j-th position*"
- What about higher-order information such as "feature i larger than feature j"?

The Kendall embedding (Jiao and Vert, 2015, 2017)



 $\Phi_{i,j}(\sigma) = \begin{cases} 1 & \text{if } \sigma(i) < \sigma(j), \\ 0 & \text{otherwise.} \end{cases}$

Geometry of the embedding



For any two permutations $\sigma, \sigma' \in \mathbb{S}_N$:

Inner product

$$\Phi(\sigma)^{\top}\Phi(\sigma') = \sum_{1 \le i \ne j \le n} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)} = n_{\mathcal{C}}(\sigma, \sigma')$$

 n_c = number of concordant pairs

Distance

$$\|\Phi(\sigma) - \Phi(\sigma')\|^2 = \sum_{1 \le i,j \le n} (\mathbb{1}_{\sigma(i) < \sigma(j)} - \mathbb{1}_{\sigma'(i) < \sigma'(j)})^2 = 2n_d(\sigma, \sigma')$$

 n_d = number of discordant pairs

• The Kendall kernel is

$$K_{\tau}(\sigma,\sigma') = n_{c}(\sigma,\sigma')$$

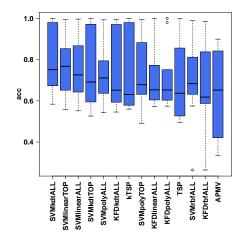
• The Mallows kernel is

$$\forall \lambda \geq \mathbf{0} \quad \mathbf{K}^{\lambda}_{\mathbf{M}}(\sigma, \sigma') = \mathbf{e}^{-\lambda \mathbf{n}_{\mathbf{d}}(\sigma, \sigma')}$$

Theorem (Jiao and Vert, 2015, 2017)

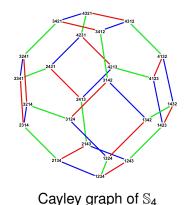
The Kendall and Mallows kernels are positive definite right-invariant kernels and can be evaluated in $O(N \log N)$ time

Kernel trick useful with few samples in large dimensions



Average performance on 10 microarray classification problems (Jiao and Vert, 2017).

Remark



- Kondor and Barbarosa (2010) proposed the diffusion kernel on the Cayley graph of the symmetric group generated by adjacent transpositions.
- Computationally intensive (O(N^{2N}))
- Mallows kernel is written as

$$K^{\lambda}_{M}(\sigma,\sigma') = e^{-\lambda n_{d}(\sigma,\sigma')},$$

where $n_d(\sigma, \sigma')$ is the shortest path distance on the Cayley graph.

- It can be computed in $O(N \log N)$
- Extension to weighted Kendall kernel (Jiao and Vert, 2018)

Remark

The SUQUAN and Kendall representations are two particular cases of the more general

Bochner's theorem

An embedding $\Phi : \mathbb{S}_N \to \mathbb{R}^p$ defines a right-invariant kernel $K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^\top \Phi(\sigma_2)$ if and only there exists $\phi : \mathbb{S}_N \to \mathbb{R}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \phi(\sigma_2^{-1}\sigma_1)$$

and

$$\forall \lambda \in \Lambda, \quad \hat{\phi}(\rho_{\lambda}) \succeq \mathbf{0}$$

where for any $f : \mathbb{S}_N \to \mathbb{R}$, the Fourier transform of f is

$$orall \lambda \in \Lambda\,, \quad \hat{f}(
ho_\lambda) = \sum_{\sigma \in \mathbb{S}_N} f(\sigma)
ho_\lambda(\sigma)\,.$$

with $\{\rho_{\lambda} : \lambda \in \Lambda\}$ the irreductible representations of the symmetric group.

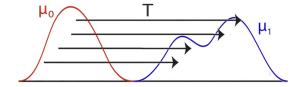
• Ranking operator:

$$rank(-15, 2.3, 20, -2) = (4, 2, 1, 3)$$

• Main problem:

 $x \in \mathbb{R}^N \mapsto \operatorname{rank}(x) \in \mathbb{S}_N$ is not differentiable

Optimal transport (OT)

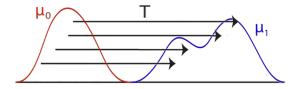


Given a cost matrix $C \in \mathbb{R}^{n \times n}$ (where C_{ij} is the cost of moving the *i*-th point to the *j*-th location), OT solves

$$\min_{\boldsymbol{P}\in \boldsymbol{B}_n}\langle \boldsymbol{P},\boldsymbol{C}\rangle$$

where $B_n = \{ P \in \mathbb{R}^{n \times n}_+ | P \mathbf{1}_n = P^{\top} \mathbf{1}_n = \mathbf{1}_n \}$ is the Birkhoff polytope.

From OT to rank



Lemma

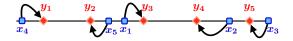
Take

• $y \in \mathbb{R}^n$ with $y_1 < \ldots < y_n$,

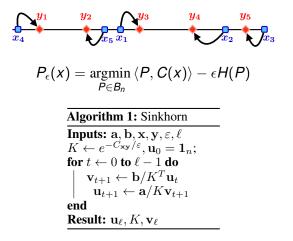
• $h \in C^2(\mathbb{R}^2)$ and $\partial^2 h / \partial x \partial y > 0$ (eg, $h(a, b) = (b - a)^2$).

For any $x \in \mathbb{R}^n$, let $C(x) \in \mathbb{R}^{n \times n}$ given by $C(x)_{ij} = h(y_i, x_j)$. Then

$$\operatorname*{argmin}_{P\in B_n} \langle P, C(x) \rangle = \Pi_{\sigma(x)}.$$

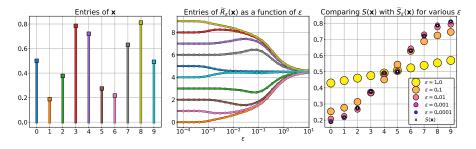


Differentiable permutation matrix



- P = diag(u_l)Kdiag(v_l) is the differentiable approximate permutation matrix of the input vector x
- Complexity $O(nm\ell)$, GPU-friendly

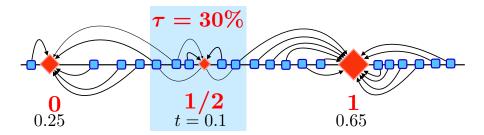
$$\mathcal{S}_{\epsilon}(x) = \mathcal{P}_{\epsilon}(x)x$$
 $\mathcal{R}_{\epsilon}(x) = \mathcal{P}_{\epsilon}(x)^{\top}(1, 2, ..., n)^{\top}$



Soft quantization and soft quantiles

• Take m = 3, $\mathbf{y} = (0, 0.5, 1)$, $\mathbf{b} = (\tau - t/2, t, \tau + t/2)$

• Overall complexity $O(n\ell)$



https://github.com/google-research/google-research/tree/master/ soft_sort

Application: soft top-k loss

S-top-k-loss
$$(f_{\theta}(\omega_0), l_0) = J_k\left(1 - \left(\widetilde{F}^{\ell}\left(\frac{\mathbf{1}_L}{L}, f_{\theta}(\omega); \frac{\mathbf{1}_m}{m}, \mathbf{y}\right)\right)_{l_0}\right)$$

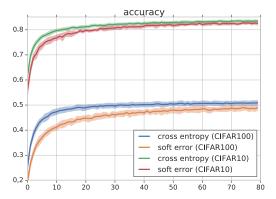
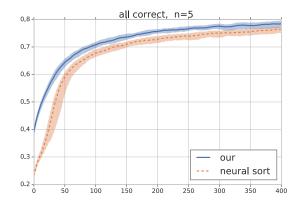


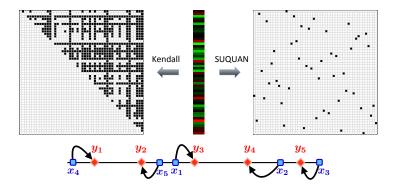
Figure 4: Error bars for test accuracy curves on CIFAR-100 and CIFAR-10 using the same network (averages over 12 runs).

Application: learning to sort

 Task: Sort 5 numbers between 0000 and 9999 (concatenation of MNIST digits) (Grover et al, 2019)



Conclusion



- Machine learning beyond vectors, strings and graphs
- Different embeddings of the symmetric group
- Differentiable sorting and ranking
- Can be generalized to other discrete operations

THANK YOU!

- M. Cuturi, O. Teboul, and J.-P. Vert. Differentiable sorting using optimal transport: the Sinkhorn CDF and quantile operator. In *Adv. Neural. Inform. Process Syst.* 31, 2019.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In *Proceedings of The 32nd International Conference on Machine Learning*, volume 37 of *JMLR:W&CP*, pages 1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017. doi: 10.1109/TPAMI.2017.2719680. URL http://dx.doi.org/10.1109/TPAMI.2017.2719680.
- Y. Jiao and J.-P. Vert. The weighted kendall and high-order kernels for permutations. Technical Report 1802.08526, arXiv, 2018.
- M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244, arXiv, 2017.
- J.-P. Serres. *Linear Representations of Finite Groups*. Graduate Texts in Mathematics. Springer-Verlag New York, 1977. doi: 10.1007/978-1-4684-9458-7. URL http://dx.doi.org/10.1007/978-1-4684-9458-7.

A representation of S_N is a matrix-valued function ρ : S_N → C<sup>d_ρ×d_ρ such that
</sup>

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad \rho(\sigma_1 \sigma_2) = \rho(\sigma_1) \rho(\sigma_2)$$

- A representation is irreductible (irrep) if it is not equivalent to the direct sum of two other representations
- S_N has a finite number of irreps {ρ_λ : λ ∈ Λ} where Λ = {λ ⊢ N}¹ is the set of partitions of N
- For any $f : \mathbb{S}_N \to \mathbb{R}$, the Fourier transform of f is

$$\forall \lambda \in \Lambda, \quad \hat{f}(\rho_{\lambda}) = \sum_{\sigma \in \mathbb{S}_{N}} f(\sigma) \rho_{\lambda}(\sigma)$$

 $^{1}\lambda \vdash N$ iff $\lambda = (\lambda_{1}, \dots, \lambda_{r})$ with $\lambda_{1} \geq \dots \geq \lambda_{r}$ and $\sum_{i=1}^{r} \lambda_{i} = N$

Bochner's theorem

An embedding $\Phi : \mathbb{S}_N \to \mathbb{R}^p$ defines a right-invariant kernel $\mathcal{K}(\sigma_1, \sigma_2) = \Phi(\sigma_1)^\top \Phi(\sigma_2)$ if and only there exists $\phi : \mathbb{S}_N \to \mathbb{R}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \phi(\sigma_2^{-1}\sigma_1)$$

and

$$\forall \lambda \in \Lambda, \quad \hat{\phi}(\rho_{\lambda}) \succeq \mathbf{0}$$