Nonlinear programming: Homework 8

Jean-Philippe Vert

June 15, 2006 (due June 27)

1 Numerical perturbation analysis

Consider the quadratic problem

minimize $x^2 + 2y^2 - xy - x$ subject to $x + 2y \le u;$, $x - 4y \le v$, $5x + 76y \le 1$.

1. Show that this is a convex problem.

2. Solve it with u = -2 and v = -3. Find the optimal primal solutions x^*, y^* and the optimal dual variables $\lambda_i^*, i = 1, 2, 3$. (hint: see section 3.6 of the CVX users' guide to find out how to retrieve optimal dual variables. To specify the quadratic objective, use quad_form().

3. We will now solve some perturbed versions of the QP with

$$u = -2 + \delta_1, \quad v = -3 + \delta_2$$

where δ_1 and δ_2 each take values from $\{-0.1, 0, 0.1\}$. For each combination make a prediction f_{pred}^* of the optimal value of the perturbed QP, and compare it to f_{exact}^* , the exact optimal value of the perturbed problem. Check that $p_{pred}^* \leq p_{exact}^*$.