Nonlinear programming: Homework 8

Jean-Philippe Vert

June 15, 2006 (due June 27)

1 Numerical perturbation analysis

Consider the quadratic problem

$$
\begin{aligned}
\operatorname{minimize} & x^{2}+2 y^{2}-x y-x \\
\text { subject to } & x+2 y \leq u ; \\
& x-4 y \leq v, \\
& 5 x+76 y \leq 1 .
\end{aligned}
$$

1. Show that this is a convex problem.
2. Solve it with $u=-2$ and $v=-3$. Find the optimal primal solutions x^{*}, y^{*} and the optimal dual variables $\lambda_{i}^{*}, i=1,2,3$. (hint: see section 3.6 of the CVX users' guide to find out how to retrieve optimal dual variables. To specify the quadratic objective, use quad_form().
3 . We will now solve some perturbed versions of the QP with

$$
u=-2+\delta_{1}, \quad v=-3+\delta_{2}
$$

where δ_{1} and δ_{2} each take values from $\{-0.1,0,0.1\}$. For each combination make a prediction $f_{\text {pred }}^{*}$ of the optimal value of the perturbed QP, and compare it to $f_{\text {exact }}^{*}$, the exact optimal value of the perturbed problem. Check that $p_{\text {pred }}^{*} \leq p_{\text {exact }}^{*}$.

