Nonlinear Optimization: The art of modeling INSEAD, Spring 2006

Jean-Philippe Vert
Ecole des Mines de Paris
Jean-Philippe.Vert@mines.org

The art of modeling

Objective: to distill the real-world as accurately and succinctly as possible into a quantitative model

- Dont want models to be too generalized: might not draw much real world value from your results.

Ex: Analyzing traffic flows assuming every person has the same characteristics.

- Dont want models to be too specific: might lose the ability to solve problems or gain insights. Ex: Trying to analyze traffic flows by modeling every single individual using different assumptions.

The four-step rule for modeling

- Sort out data and parameters from the verbal description
- Define the set of decision variables
- Formulate the objective function of data and decision variables
- Set up equality and/or inequality constraints

Problem reformulation

- Only few problems can be solved efficiently (LP, QP, ...)
- Your problem can often be reformulated in an (almost) equivalent problem that can be solved, up to:
- adding/removing variables
- adding/removing constraints
- modifying the objective function

Problem reformulation is key for practical optimization!

Model 1: a cheap and healthy diet

A healthy diet contains m different nutrients in quantities at least equal to b_{1}, \ldots, b_{m}. We can compose such a diet with n different food. The j 's food has a cost c_{j}, and contains an amount $a_{i j}$ of nutrients $i(i=1, \ldots, m)$.

How to determine the cheapest healthy diet that satisfies the nutritional requirements?

A cheap and healthy diet (cont.)

- Decision variables: the quantities of the n different food (nonnegative scalars)
- Objective function: the cost of the diet, to be minimized.
- Constraints: be healthy, i.e., lower bound on the quantities of each food.

A cheap and healthy diet (cont.)

Let x_{1}, \ldots, x_{n} the quantities of the n different food. The problem can be formulated as the $L P$:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j=1}^{n} x_{j} c_{j} \\
\text { subject to } & \sum_{j=1}^{n} x_{j} a_{i j} \geq b_{i}, \quad i=1, \ldots, m \\
& x_{j} \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

This is easily solved (see "Linear Programming" course)

Model 2: Air traffic control

Air plane $j, j=1, \ldots, n$ arrives at the airport within the time interval $\left[a_{j}, b_{j}\right]$ in the order of $1,2, \ldots, n$. The airport wants to find the arrival time for each air plane such that the narrowest metering time (inter-arrival time between two consecutive airplanes) is the greatest.

Air traffic control (cont.)

- Decision variables: the arrival times of the planes.
- Objective function: the narrowest metering time, to be maximized.
- Constraints: arrive in the good order, and in the good time slots.

Air traffic control (cont.)

Let t_{j} be the arrival time of plane j. Then optimization problem translates as:

$$
\begin{array}{ll}
\operatorname{maximize} & \min _{j=1, \ldots, n-1}\left(t_{j+1}-t_{j}\right) \\
\text { subject to } & a_{j} \leq t_{j} \leq b_{j}, \quad j=1, \ldots, n, \\
& t_{j} \leq t_{j+1}, \quad j=1, \ldots, n-1 .
\end{array}
$$

In order to solve it we need to reformulate it in a simpler way.

Air traffic control (cont.)

Reformulation with a slack variable:
maximize Δ
subject to $\quad a_{j} \leq t_{j} \leq b_{j}, \quad j=1, \ldots, n$, $t_{j} \leq t_{j+1}, \quad j=1, \ldots, n-1$,
$\Delta \leq \min _{j=1, \ldots, n-1}\left(t_{j+1}-t_{j}\right)$.
Equivalent to the $L P$ (and therefore easily solved):
maximize Δ
subject to $\quad a_{j} \leq t_{j} \leq b_{j}, \quad j=1, \ldots, n$,

$$
\begin{aligned}
& t_{j} \leq t_{j+1}, \quad j=1, \ldots, n-1, \\
& \Delta \leq t_{j+1}-t_{j}, \quad j=1, \ldots, n-1 .
\end{aligned}
$$

Model 3: Fisher's exchange market

Buyers have money (w_{i}) to buy goods and maximize their individual utility functions; Producers sell their goods for money. The equilibrium price is an assignment of prices to goods so as when every buyer buys an maximal bundle of goods then the market clears, meaning that all the money is spent and all goods are sold.

Fisher's exchange market

Goods
Buyers

Buyer's strategies

Let $x_{i, j}$ the amount of good $j \in G$ bought by buyer $i \in B$. Let $U_{i}(x)=U_{i}\left(x_{i, 1}, \ldots, x_{i, G}\right)$ be the utility function of buyer $i \in B$.

Buyer $i \in B$'s optimization problem for given prices $p_{j}, j \in G$ is the following $L P$:

$$
\begin{array}{ll}
\text { maximize } & U_{i}(x) \\
\text { subject to } & \sum_{j \in G} p_{j} x_{i j} \leq w_{i}, \\
& x_{i j} \geq 0, \quad \forall j \in G .
\end{array}
$$

Depending on U this is a LP (linear), QP (quadratic), LCCP (convex)...

Equilibrium price

Without losing generality, assume that the amount of each good is 1 . The equilibrium price vector p^{*} is the one that ensures:

$$
\sum_{i \in B} x^{*}\left(p^{*}\right)_{i j}=1
$$

for all goods $j \in G$, where $x^{*}(p)$ are the optimal bundle solutions.

Example of Fisher's market

Buyer 1,2's optimization problems for given prices p_{x}, p_{y} assuming linear utility functions:

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+y_{1} \\
\text { subject to } & p_{x} x_{1}+p_{y} y_{1} \leq 5 \\
& x_{1}, y_{1} \geq 0 \\
\text { maximize } & 3 x_{2}+y_{2} \\
\text { subject to } & p_{x} x_{2}+p_{y} y_{2} \leq 8, \\
& x_{2}, y_{2} \geq 0
\end{aligned}
$$

Model 4: Chebyshev center

How to find the largest Euclidean ball that lies in a polyhedron described by a set of linear inequalities:

$$
\mathcal{P}=\left(x \in \mathbb{R}^{n} \mid a_{i}^{\top} x \leq b_{i}, i=1, \ldots, m\right) .
$$

The center of the optimal ball is called the Chebyshev center of the polyhedron; it is the point deepest inside the polyhedron, i.e., farthest from the boundary.

Chebyshev center (cont.)

The variables are the center $x_{c} \in \mathbb{R}^{n}$ and the radius $r \geq 0$ of the ball:

$$
\mathcal{B}=\left(x_{c}+u \mid\|u\|_{2} \leq r\right) .
$$

The problem is then

$$
\begin{array}{ll}
\text { maximize } & r \\
\text { subject to } & \mathcal{B} \subseteq \mathcal{P} .
\end{array}
$$

We now need to translate the constraint into equations.

Chebyshev center (cont.)

For a single half-space defined by the equation $a_{i}^{\top} x \leq b_{i}, \mathcal{B}$ is on the correct halfspace iff it holds that:

$$
\|u\|_{2} \leq r \Longrightarrow a_{i}^{\top}\left(x_{c}+u\right) \leq b_{i} .
$$

But the maximum value that $a_{i}^{\top} u$ takes when $\|u\|_{2} \leq r$ is $r\left\|a_{i}\right\|_{2}$. Therefore the constraint for a single half-space can be rewritten as:

$$
a_{i}^{\top} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i} .
$$

Chebyshev center (cont.)

The Chebyshev center is therefore found by solving the following LP:
$\begin{array}{ll}\text { maximize } & r \\ \text { subject to } & a_{i}^{\top} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m .\end{array}$

Model 5: Distance between polyhedra

How to find the distance between two polyhedra \mathcal{P}_{1} and \mathcal{P}_{2} defined by two sets of linear inequalities:

$$
\begin{aligned}
& \mathcal{P}_{1}=\left(x \in \mathbb{R}^{n} \mid A_{1} x \leq b_{1}\right) \\
& \mathcal{P}_{2}=\left(x \in \mathbb{R}^{n} \mid A_{2} x \leq b_{2}\right)
\end{aligned}
$$

Distance between polyhedra (cont.)

The distance between two sets can be written as a minimum:

$$
d\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)=\min _{x_{1} \in \mathcal{P}_{1}, x_{2} \in \mathcal{P}_{2}}\left\|x_{1}-x_{2}\right\|_{2} .
$$

The squared distance is therefore the solution of the following $Q P$:

$$
\begin{aligned}
\text { minimize } & \left\|x_{1}-x_{2}\right\|_{2}^{2} \\
\text { subject to } & A_{1} x_{1} \leq b_{1}, \\
& A_{2} x_{2} \leq b_{2} .
\end{aligned}
$$

Model 6: Portfolio optimization

We consider a classical portfolio problem with n assets or stocks held over a period of time. The vector of relative price changes over an investment period $p \in \mathbb{R}^{n}$ is assumed to be random variable with known mean \bar{p} and covariance Σ. We want to define an investment strategies, which minimizes the risk (variance) of the return, while ensuring an expected return above a threshold $r_{\text {min }}$.
This investment strategy has been proposed first by Markowitz.

Portfolio optimization (cont.)

The decision variable is the portfolio vector $x \in \mathbb{R}^{n}$, i.e., the amount of each asset x_{i} to buy, in dollars $(i=1 \ldots, n)$. We call B the total amount of dollars we can invest.
The return in dollars is $r=p^{\top} x$, where p is the vector of relative prices changes over the period. The return is therefore a random variable with mean and variance:

$$
\begin{aligned}
E(r) & =\bar{p}^{\top} x, \\
\operatorname{Var}(r) & =x^{\top} \Sigma x .
\end{aligned}
$$

Portfolio optimization (cont.)

The Markowitz portfolio optimization problem is therefore the following QP:

$$
\begin{aligned}
\text { minimize } & x^{\top} \Sigma x \\
\text { subject to } & \bar{p}^{\top} x \geq r_{\min } \\
& \sum_{i=1}^{n} x_{i} \leq B \\
& x_{i} \geq 0, \quad i=1, \ldots, n
\end{aligned}
$$

Model 6: Predicting traffic accidents

We monitor everyday the number of traffic accidents in Paris, together with several other explanatory variables. The goal is to make a model to predict the number of accidents from the explanatory variables, by fitting a Poisson distribution with mean depending linearly on the explanatory variables by maximum likelihood on the historical data.

Traffic accidents (cont.)

The Poisson distribution is commonly used to model nonnegative integer-valued random variables Y (photon arrivals, traffic accidents...). It is defined by:

$$
P(Y=k)=\frac{e^{-\mu} \mu^{k}}{k!},
$$

where μ is the mean.
Here we assume that the number of accidents follows a
Poisson distribution with a mean μ that depends linearly on the vector $x \in \mathbb{R}^{n}$ of explanatory variables:

$$
\mu=a^{\top} x+b .
$$

The parameters $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ are called the model parameters, and must be set according to some principle.

Traffic accidents (cont.)

We are given a set of historical data that consists of pairs $\left(x_{i}, y_{i}\right), i=1, \ldots, m$ where y_{i} is the number of traffic accidents and x_{i} is the vector of explanatory variables at day i. The likelihood of the parameters (a, b) is defined by:

$$
\begin{aligned}
l(a, b) & =\prod_{i=1}^{m} P\left(y_{i} \mid x_{i}\right) \\
& =\prod_{i=1}^{m} \frac{\left(a^{\top} x_{i}+b\right)^{y_{i}} \exp \left(-\left(a^{\top} x_{i}+b\right)\right)}{y_{i}!}
\end{aligned}
$$

Traffic accidents (cont.)

Finding the parameter (a, b) by maximum likelihood is therefore obtained by solving the following unconstrained convex problem:

$$
\text { maximize } \sum_{i=1}^{m}\left\{y_{i} \log \left(a^{\top} x_{i}+b\right)-\left(a^{\top} x_{i}+b\right)\right\} .
$$

Model 7: Robust linear discrimination

Given n points in \mathbb{R}^{p} from two classes that can be linearly separated, find the linear separator that is the furthest away from the closest point.

Robust linear discrimination (cont.)

A linear hyperplane is defined by the equation:

$$
\mathcal{H}_{0}=\left\{x \in \mathbb{R}^{p}: a^{\top} x+b=0\right\},
$$

for some $a \in \mathbb{R}^{p}$ and $b \in \mathbb{R}$.

Two parallel hyperplanes on either side are defined by:
$\begin{aligned} \mathcal{H}_{-1} & =\left\{x \in \mathbb{R}^{p}: a^{\top} x+b=-1\right\} \\ \mathcal{H}_{1} & =\left\{x \in \mathbb{R}^{p}: a^{\top} x+b=1\right\} .\end{aligned}$

Robust linear discrimination (cont.)

- The distance between \mathcal{H}_{-1} and \mathcal{H}_{1} is equal to $2 /\|a\|_{2}$. Maximizing the distance is equivalent to minimizing $\|a\|_{2}$.
- Let $y_{i} \in\{-1,+1\}$ be the label of the point x_{i}. The point is on the correct region of the space iff:

$$
\begin{cases}a^{\top} x_{i}+b \geq 1 & \text { if } y_{i}=1 \\ a^{\top} x_{i}+b \leq-1 & \text { if } y_{i}=-1\end{cases}
$$

This is equivalent to:

$$
y_{i}\left(a^{\top} x_{i}+b\right) \geq 1 .
$$

Robust linear discrimination (cont.)

The optimal separating hyperplane is therefore the solution of the following QP:
minimize $\|a\|^{2}$
subject to $\quad y_{i}\left(a^{\top} x_{i}+b\right) \geq 1, i=1, \ldots, n$.

Summary

- There are a few general rules to follow to transform a real-world problem into an optimization problem
- Most optimization problems are difficult to solve, therefore problem reformulation is often crucial for later practical optimization
- Problem formulation and reformulation involve a few classical tricks (e.g., slack variables) and much experience and know-how about which problems can efficiently be solved.

