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Equality constrained minimization
problems
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Equality constrained minimization

We consider the problem:

minimize f(x)

subject to Ax = b ,

f is supposed to be convex and twice continuously
differentiable.

A is a p × n matrix of rank p < n (i.e., fewer equality
constraints than variables, and independent equality
constraints).

We assume f∗ is finite and attained at x∗
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Optimality conditions

Remember that a point x∗ ∈ R
n is optimal if and only if there

exists a dual variable λ∗ ∈ R
p such that:

{

Ax∗ = b ,

∇f(x∗) + A>λ∗ = 0 .

This is a set of n + p equations in the n + p variables x, λ,

called the KKT system.
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How to solve such problems?

Analytically solve the KKT system (usually not possible)

Eliminate the equality constraints to reduce the
constrained problem to an unconstrained problem with
fewer variables, and then solve using unconstrained
minimization algorithms.

Solve the dual problem using an unconstrained
minimization algorithm

Adapt Newton’s methods to the constrained
minimization setting (keep the Newton step in the set of
feasible directions etc...): often preferable to other
methods.
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Quadratic minimization

Consider the equality constrained convex quadratic
minimization problem:

minimize
1

2
x>Px + q>x + r

subject to Ax = b ,

where P ∈n×n, P � 0 and A ∈ R
p×n. The optimality

conditions are:
{

Ax∗ = b ,

∇f(x∗) + A>λ∗ = 0 .
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Quadratic minimization (cont.)

The optimality conditions can be rewritten as the KKT
system:

(

P A>

A 0

)(

x∗

λ∗

)

=

(

−q

b

)

.

The coefficient matrix in this system is called the KKT
matrix.

If the KKT matrix is nonsingular (e.g, if P � 0) there is a
unique optimal primal-dual pair (x∗, λ∗).

If the KKT matrix is singular but the KKT system
solvable, any solution yields an optimal pair (x∗, λ∗).

It the KKT system is not solvable, the minimization
problem is unbounded below.
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Eliminating equality constraints

One general approach to solving the equality constrained
minimization problem is to eliminate the constraints, and
solve the resulting problem with algorithms for
unconstrained minimization. The elimination is obtained by
a reparametrization of the affine subset:

{x | Ax = b} =
{

x̂ + Fz | z ∈ R
n−p
}

x̂ is any particular solution

range of F ∈ R
n×(n−p) is the nullspace of A

(rank(F ) = n − p and AF = 0.)
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Example

Optimal allocation with resource constraint: we want to
allocate a single resource, with a fixed total amount b (the
budget), to n otherwise independent activities:

minimize f1 (x1) + f2 (x2) + . . . + fn (xn)

subject to x1 + x2 + . . . + xn = b .

Eliminate xn = b − x1 − . . . − xn−1, i.e., choose:

x̂ = ben , F =

(

I

−1
>

)

∈ R
n×(n−1) ,

leads to the reduced problem:

min
x1,...,xn−1

f1 (x1) + . . . + fn−1 (xn−1) + fn (b − x1 − . . . − xn−1) .
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Solving the dual

Another approach to solving the equality constrained
minimization problem is to solve the dual:

max
λ∈Rp

{

−b>λ + inf
x

{

f(x) + λ>Ax
}}

.

By hypothesis there is an optimal point so Slater’s conditions

hold: strong duality holds and the dual optimum is attained.

If the dual function is twice differentiable, then the methods

for unconstrained optimization can be used to maximize it.
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Example

The equality constrained analytic center is given (for
A ∈ R

p×n) by:

minimize f(x) = −
n
∑

i=1

log xi

subject to Ax = b .

The Lagrangian is

L(x, λ) = −

n
∑

i=1

log xi + λ> (Ax − b)
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Example (cont.)

We minimize this convex function of x by setting the
derivative to 0:

(

A>λ
)

i
=

1

xi
,

therefore the dual function for λ ∈ R
p is:

q (λ) = −b>λ + n +
n
∑

i=1

log
(

A>λ
)

i

We can solve this problem using Newton’s method for
unconstrained problem, and recover a solution for the
primal problem via the simple equation:

x∗
i =

1
(

A>λ∗
)

i

.
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Newton’s method with equality
constraints
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Motivation

Here we describe an extension of Newton’s method to
include linear equality constraint. The methods are almost
the same except for two differences:

the initial point must be feasible (Ax = b),

the Newton step must be a feasible direction
(A∆xnt = 0).
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The Newton step

The Newton step of f at a feasible point x for the linear
equality constrained problem is given by (the first block of)
the solution of:

(

∇2f(x) A>

A 0

)(

∆xnt

w

)

=

(

−∇f(x)

0

)

.

Interpretations

∆xnt solves the second-order approximation of f at x
(with variable v):

minimize f(x) + ∇f(x)>v +
1

2
v>∇2f(x)v

subject to A(x + v) = b .
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The Newton step (cont.)

When f is exactly quadratic, the Newton update
x + ∆xnt exactly solves the problem and w is the
optimal dual variable. When f is nearly quadratic,
x + ∆xnt is a very good approximation of x∗, and w is a
good estimate of λ∗.

Solution of linearized optimality condition. ∆xnt and w
are solutions of the linearized approximation of the
optimality condition:

{

∇f (x + ∆xnt) + A>w = 0 ,

A(x + ∆xnt) = b .
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Newton decrement

λ(x) =
(

∆xnt∇
2f(x)∆xnt

)

1

2

Give an estimate of f(x) − f∗ using quadratic
approximation:

f(x) − inf
Ay=b

f̂(y) =
1

2
λ(x)2 .

directional derivative in Newton direction:

d

dt
f (x + t∆xnt) |t=0 = −λ(x)2 .
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Newton’s method

given starting point x ∈ R
n with Ax = b, tolerance ε > 0.

repeat
1. Compute the Newton step and decrement ∆xnt, λ(x).

2. Stopping criterion. quit if λ2/2 < ε.
3. Line search. Choose step size t by backtracking line

search.
4. Update: x := x + t∆xnt.
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Newton’s method and elimination

Newton’s method for the reduced problem:

minimize f̃(z) = f(Fz + x̂)

starting at z(0), generates iterates z(k).

Newton’s method with equality constraints: when
started at x(0) = Fz(0) + x̂, iterates are:

x(k) = Fz(k) + x̂.

=⇒ the iterates in Newton’s method for the equality
constrained problem coincide with the iterates in
Newton’s method applied to the unconstrained reduced
problem. All convergence analysis therefore remains
valid.
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Summary

The Newton method for equality constrained
optimization problems is the most natural extension of
the Newton’s method for unconstrained problem: it
solves the problem on the affine subset of constraints.

All results valid for the Newton’s method on
unconstrained problems remain valid, in particular it is a
good method.

Drawback: we need a feasible initial point.
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Infeasible start Newton method
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Motivation

Newton’s method for constrained problem is a descent
method that generates a sequence of feasible points.

This requires in particular a feasible point as a starting
point.

Here we generalize Newton’s method to work with initial
points and iterates that are not feasible.

A price to pay is that it is not necessarily a descent
method.
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Newton step at infeasible points

The Newton step of f at an infeasible point x for the linear
equality constrained problem is given by (the first block of)
the solution of:

(

∇2f(x) A>

A 0

)(

∆xnt

w

)

= −

(

∇f(x)

Ax − b

)

.

When x is feasible, Ax − b = 0 and we recover the
classical Newton step for equality constrained problems.
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Interpretation 1

Remember the optimality conditions:

Ax∗ = b , ∇f (x∗) + A>λ∗ = 0 .

Let x be the current point (not necessarily feasible). Our
goal is to find a step ∆x s.t. x + ∆x satisfies approximately
the optimality condition. After linearization we get:

A (x + ∆x) = b , ∇f(x) + ∇2f(x)∆x + A>w = 0 ,

i.e., the definition of the Newton step.
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Primal-dual interpretation

A primal-dual method is a method in which we update both
the primal variable x and the dual variable λ, in order to
(approximately) satisfy the optimality conditions.
For a given primal-dual pair y = (x, λ), the optimality
conditions are r(y) = 0 with

r(y) =
(

∇f(x) + A>λ,Ax − b
)

.

Linearizing r(y) = 0 gives r(y + ∆y) = r(y) + Dr(y)∆y = 0,
i.e.:

(

∇2f(x) A>

A 0

)(

∆xnt

∆λnt

)

= −

(

∇f(x) + A>λ

Ax − b

)

.

which is similar to the Newton step with w = λ + ∆λnt.
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Residual norm

The Newton direction is not necessarily a descent direction:

d

dt
f (x + t∆x) |t=0 = ∇f(x)>∆x

= −∆x>
(

∇2f(x)∆x + A>w
)

= −∆x>∇2f(x)∆x + (Ax − b)
>

w ,

which is not necessarily negative (unless Ax = b). The residual of the
primal-dual interpretation, however decreases in norm at each iteration
because:

d

dt
‖ r (y + t∆ypd) ‖|t=0 = −‖ r(y) ‖2 ≤ 0 ,

therefore the norm ‖ r ‖2 can be used to measure the progress of the in-

feasible start Newton method, for example in the line search.
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Infeasible start Newton method

given starting point x ∈ R
n, tolerance

ε > 0, α ∈ (0, 1/2), β ∈ (0, 1)

repeat
1. Compute primal and dual Newton steps ∆xnt,∆λnt

2. Backtracking line search on ‖ r ‖2:
t:=1
while ‖ r (x + t∆xnt, λ + t∆λnt) ‖2 >
(1 − αt)‖ r(x, λ) ‖2 , t = βt .

3. Update: x = x + t∆xnt, λ = λ + t∆λnt .
until Ax = b and ‖ r(x, v ‖2 ≤ ε.
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Example

Equality constrained analytic centering:

minimize −
n
∑

i=1

log xi

subject to Ax = b .

The dual problem is

max
λ

−b>λ +

n
∑

i=1

log
(

A>λ
)

i
+ n .

We compare three methods for solving this problem with A ∈

R
100×500, with different starting points.
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Example (cont)

1. Newton’s method with equality constraint
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Example (cont)

1. Newton’s method applied to the dual
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Example (cont)

1. Infeasible start Newton’s method
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Summary

The three methods have the same complexity for each
iteration

In this example, the dual method is faster, but only by a
factor of 2 or 3.

The methods also differ by the initialization they require:

Primal: Ax(0) = 0, x(0) > 0.

Dual: A>λ(0) > 0.
Infeasible start: x > 0

Depending on the problem, one or the other might be
more readily available.
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