Nonlinear Optimization: Algorithms 3: Interior-point methods

INSEAD, Spring 2006

Jean-Philippe Vert

Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Outline

- Inequality constrained minimization
- Logarithmic barrier function and central path
- Barrier method
- Feasibility and phase I methods

Inequality constrained minimization

Setting

We consider the problem:

minimize f(x)subject to $g_i(x) \le 0$, i = 1, ..., m, Ax = b,

- f and g are supposed to be convex and twice continuously differentiable.
- A is a $p \times n$ matrix of rank p < n (i.e., fewer equality constraints than variables, and independent equality constraints).
- We assume f^* is finite and attained at x^*

Strong duality hypothesis

• We finally assume the problem is *strictly feasible*, i.e., there exists x with $g_i(x) < 0, i = 1, ..., m$, and Ax = 0. This means that Slater's constraint qualification holds \implies strong duality holds and dual optimum is attained, i.e., there exists $\lambda^* \in \mathbb{R}^p$ and $\mu \in \mathbb{R}^m$ which together with x^* satisfy the KKT conditions:

$$Ax^* = b$$

$$g_i(x^*) \le 0, \quad i = 1, \dots, m$$

$$\mu^* \ge 0$$

$$\nabla f(x^*) + \sum_{i=1}^{m} \mu_i^* \nabla g_i(x^*) + A^\top \lambda^* = 0$$
$$\mu_i^* g_i(x^*) = 0 , \quad i = 1, \dots, m .$$

Examples

Many problems satisfy these conditions, e.g.:

- LP, QP, QCQP
- Entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \le g$
 $Ax = b$.

Examples (cont.)

To obtain differentiability of the objective and constraints we might reformulate the problem, e.g:

minimize
$$\max_{i=1,\dots,n} \left(a_i^\top x\right) + b_i$$

with nondifferentiable objective is equivalent to the LP:

minimize tsubject to $a_i \top x + b \le t$, $i = 1, \dots, m$. Ax = b.

Overview

Interior-point methods solve the problem (or the KKT conditions) by applying Newton's method to a sequence of equality-constrained problems. They form another level in the *hierarchy of convex optimization algorithms*:

- Linear equality constrained quadratic problems (LCQP) are the simplest (set of linear equations that can be solved analytically)
- Newton's method: reduces linear equality constrained convex optimization problems (*LCCP*) with twice differentiable objective to a sequence of *LCQP*.
- Interior-point methods reduce a problem with linear equality and inequality constraints to a sequence of LCCP.

Logarithmic barrier function and central path

Problem reformulation

Our goal is to approximately formulate the *inequality constrained problem* as an *equality constrained problem* to which Newton's method can be applied. To this end we first hide the inequality constraint implicit in the objective:

minimize
$$f(x) + \sum_{i=1}^{m} I_{-}(g_{i}(x))$$

subject to $Ax = b$,

where $I_{-}: \mathbb{R} \to \mathbb{R}$ is the *indicator function for nonpositive reals*:

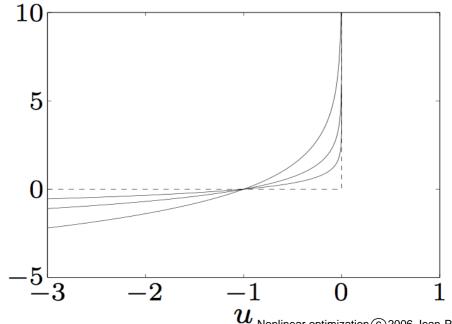
$$I_{-}(u) = \begin{cases} 0 & \text{if } u \leq 0 \\ +\infty & \text{if } u > 0 \end{cases}.$$

Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I_{-} by the convex and differentiable function

$$\hat{I}_{-}(u) = -\frac{1}{t}\log(-u) , \quad u < 0 ,$$

where t > 0 is a parameter that sets the accuracy of the prediction.



Problem reformulation

Subsituting \hat{I}_{-} for I_{-} in the optimization problem gives the approximation:

minimize
$$f(x) + \sum_{i=1}^{m} -\frac{1}{t} \log (-g_i(x))$$

subject to $Ax = b$,

The objective function of this problem is convex and twice differentiable, so *Newton's method* can be used to solve it. Of course this problem is just an *approximation* to the original problem. We will see that the quality of the approximation of the solution increases when t increases.

Logarithmic barrier function

The function

$$\phi(x) = -\sum_{i=1}^{m} \log\left(-g_i(x)\right)$$

is called the *logarithmic barrier* or *log barrier* for the original optimization problem. Its domain is the set of points that satisfy *all inequality constraints strictly*, and it grows without bound if $g_i(x) \rightarrow 0$ for any *i*. Its gradient and Hessian are given by:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-g_i(x)} \nabla g_i(x) ,$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)^2} \nabla g_i(x) \nabla g_i(x)^{\top} + \sum_{i=1}^{m} \frac{1}{-g_i(x)} \nabla^2 g_i(x) .$$

Central path

Our approximate problem is therefore (equivalent to) the following problem:

minimize $tf(x) + \phi(x)$ subject to Ax = b.

We assume for now that this problem can be solved via Newton's method, in particular that it has *a unique solution* $x^*(t)$ for each t > 0.

The *central path* is the set of solutions, i.e.:

 $\{x^*(t) \mid t > 0\}$.

Characterization of the central path

A point $x^*(t)$ is on the central path *if and only if*:

it is strictly feasible, i.e., satisfies:

$$Ax^*(t) = b$$
, $g_i(x^*(t)) < 0$, $i = 1, ..., m$.

• there exists a $\hat{\lambda} \in \mathbb{R}^p$ such that:

$$0 = t\nabla f(x^{*}(t)) + \nabla \phi(x^{*}(t)) + A^{\top}\hat{\lambda}$$

= $t\nabla f(x^{*}(t)) + \sum_{i=1}^{m} \frac{1}{-g_{i}(x^{*}(t))} \nabla g_{i}(x^{*}(t)) + A^{\top}\hat{\lambda}.$

Example: LP central path

The log barrier for a LP:

minimize $c^{\top}x$ subject to $Ax \leq b$,

is given by

$$\phi(x) = -\sum_{i=1}^{m} \log\left(b_i - a_i^{\top} x\right) ,$$

where a_i is the *i*th row of A. Its derivatives are:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{b_i - a_i^{\top} x} a_i , \quad \nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{\left(b_i - a_i^{\top} x\right)^2} a_i a_i^{\top}$$

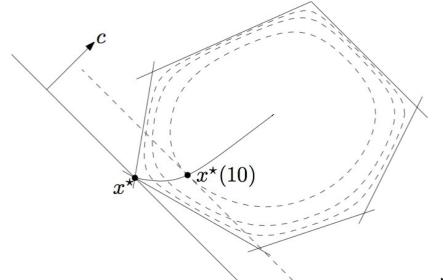
Example (cont.)

The derivatives can be rewritten more compactly:

$$\nabla \phi(x) = A^{\top} d$$
, $\nabla^2 \phi(x) = A^{\top} diag(d)^2 A$,

where $d \in \mathbb{R}^m$ is defined by $d_i = 1/(b_i - a_i^\top x)$. The centrality condition for $x^*(t)$ is:

$$tc + A^{\top}d = 0$$



⇒ at each point on the central path, $\nabla \phi(x)$ is parallel to -c.

Dual points on central path

Remember that $x = x^*(t)$ if there exists a w such that

$$t\nabla f(x^*(t)) + \sum_{i=1}^m \frac{1}{-g_i(x^*(t))} \nabla g_i(x^*(t)) + A^{\top} \hat{\lambda} = 0, \quad Ax = b.$$

Let us now define:

$$\mu_i^*(t) = -\frac{1}{tg_i(x^*(t))}, \quad i = 1, \dots, m, \quad \lambda^*(t) = \frac{\hat{\lambda}}{t}.$$

We claim that *the pair* $\lambda^*(t)$, $\mu^*(t)$ *is dual feasible.*

Dual points on central path (cont.)

Indeed:

- $\mu^*(t) > 0$ because $g_i(x^*(t)) < 0$
- $x^*(t)$ minimizes the Lagrangian

$$L(x,\lambda^{*}(t),\mu^{*}(t)) = f(x) + \sum_{i=1}^{m} \mu_{i}^{*}(t)g_{i}(x) + \lambda^{*}(t)^{\top} (Ax - b)$$

Therefore the dual function $q(\mu^*(t), \lambda^*(t))$ is finite and:

$$q(\mu^*(t), \lambda^*(t)) = L(x^*(t), \lambda^*(t), \mu^*(t)) = f(x^*(t)) - \frac{m}{t}$$

Convergence of the central path

From the equation:

$$q(\mu^*(t), \lambda^*(t)) = f(x^*(t)) - \frac{m}{t}$$

we deduce that the *duality gap* associated with $x^*(t)$ and the dual feasible pair $\lambda^*(t)$, $\mu^*(t)$ is simply *m/t*. As an important consequence we have:

$$f\left(x^*(t)\right) - f^* \le \frac{m}{t}$$

This confirms the intuition that $f(x^*(t)) \to f^*$ if $t \to \infty$.

Interpretation via KKT conditions

We can rewrite the conditions for x to be on the central path by the existence of λ, μ such that:

- 1. Primal constraints: $g_i(x) \leq 0$, Ax = b
- 2. Dual constraints : $\mu \ge 0$
- 3. *approximate* complementary slackness: $-\mu_i g_i(x) = 1/t$
- 4. gradient of Lagrangian w.r.t. x vanishes:

$$\nabla f(x) + \sum_{i=1}^{m} \mu_i \nabla g_i(x) + A^{\top} \lambda = 0$$

The only difference with KKT is that 0 is replaced by 1/t in 3. For "large" t, the point on the central path "*almost*" satisfies the KKT conditions.

The barrier method

Motivations

We have seen that the point $x^*(t)$ is m/t-suboptimal. In order to solve the optimization problem with a guaranteed specific accuracy $\epsilon > 0$, it suffices to take $t = m/\epsilon$ and solve the equality constrained problem:

minimize
$$\frac{m}{\epsilon}f(x) + \phi(x)$$

subject to $Ax = b$

by Newton's method. However this only works for *small problems, good starting points and moderate accuracy*. It is rarely, if ever, used.

Barrier method

• given strictly feasible x, $t = t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. Centering step: compute $x^*(t)$ by minimizing $tf + \phi$, subject to Ax = b
- 2. Update: $x := x^*(t)$.
- 3. Stopping criterion: *quit* if $m/t < \epsilon$.
- 4. Increase t: $t := \mu t$.

Barrier method: Centering

- Centering is usually done with Newton's method, starting at current x
- Inexact centering is possible, since the goal is only to obtain a sequence of points $x^{(k)}$ that converges to an optimal point. In practice, however, the cost of computing an extremely accurate minimizer of $tf_0 + \phi$ as compared to the cost of computing a good minimizer is only marginal.

Barrier method: choice of μ

The choice of μ involves a trade-off

- For small µ, the initial point of each Newton process is good and few Newton iterations are required; however, many outer loops (update of t) are required.
- For large µ, many Newton steps are required after each update of t, since the initial point is probably not very good. However few outer loops are required.
- In practice $\mu = 10 20$ works well.

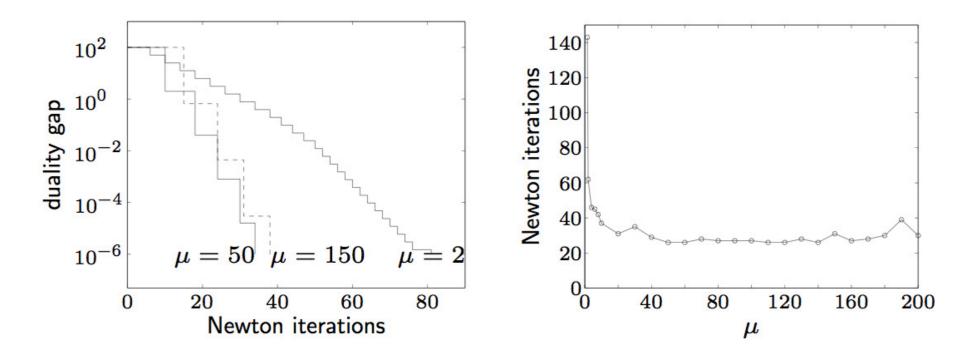
Barrier method: choice of $t^{(0)}$

The choice of $t^{(0)}$ involves a simple trade-off

- if $t^{(0)}$ is chosen too large, the first outer iteration will require too many Newton iterations
- If $t^{(0)}$ is chosen too small, the algorithm will require extra outer iterations

Several heuristics exist for this choice.

Example: LP in inequality form



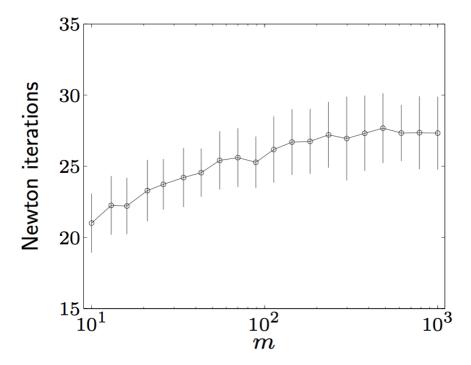
m = 100 inequalities, n = 50 variables.

- start with x on central paht ($t^{(0)} = 1$, duality gap 100), terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- for $\mu > 10$ total number of Newton iterations not very sensitive for $\mu > 10$

Example: A family of standard LP

minimize $c^{\top}x$ subject to $Ax = b, x \ge 0$

for $A \in \mathbb{R}^{m \times 2m}$. Test for $m = 10, \ldots, 1000$:



The number of iterations grows *very slowly* as m ranges over a 100 : 1 ratio.

Feasibility and phase I methods

The barrier method requires a *strictly feasible* starting point $x^{(0)}$:

$$g_i(x^{(0)}) < 0, i = 1, \dots, m \quad Ax^{(0)} = 0.$$

When such a point is not known, the barrier method is preceded by a preliminary stage, called *phase I*, in which a strictly feasible point is computed.

Basic phase I method

minimize s subject to $g_i(x) \le s$, i = 1, ..., m, Ax = b,

- this problem is always strictly feasible (choose any x, and s large enough).
- apply the barrier method to this problem = phase I optimization problem.
- If x, s feasible with s < 0 then x is strictly feasible for the initial problem
- If $f^* > 0$ then the original problem is infeasible.

Primal-dual interior-point methods

A variant of the barrier method, more efficient when high accurary is needed

- update primal and dual variables at each iteration: no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method