Nonlinear Optimization: Algorithms 3: Interior-point methods
 INSEAD, Spring 2006

Jean-Philippe Vert
Ecole des Mines de Paris
Jean-Philippe.Vert@mines.org

Outline

- Inequality constrained minimization
- Logarithmic barrier function and central path
- Barrier method
- Feasibility and phase I methods

Inequality constrained minimization

Setting

We consider the problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad i=1, \ldots, m, \\
& A x=b,
\end{aligned}
$$

- f and g are supposed to be convex and twice continuously differentiable.
- A is a $p \times n$ matrix of rank $p<n$ (i.e., fewer equality constraints than variables, and independent equality constraints).
- We assume f^{*} is finite and attained at x^{*}

Strong duality hypothesis

- We finally assume the problem is strictly feasible, i.e., there exists x with $g_{i}(x)<0, i=1, \ldots, m$, and $A x=0$. This means that Slater's constraint qualification holds \Longrightarrow strong duality holds and dual optimum is attained, i.e., there exists $\lambda^{*} \in \mathbb{R}^{p}$ and $\mu \in \mathbb{R}^{m}$ which together with x^{*} satisfy the KKT conditions:

$$
\begin{aligned}
A x^{*} & =b \\
g_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\mu^{*} & \geq 0 \\
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \mu_{i}^{*} \nabla g_{i}\left(x^{*}\right)+A^{\top} \lambda^{*} & =0 \\
\mu_{i}^{*} g_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m .
\end{aligned}
$$

Examples

Many problems satisfy these conditions, e.g.:

- LP, QP, QCQP
- Entropy maximization with linear inequality constraints

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & F x \leq g \\
& A x=b
\end{aligned}
$$

Examples (cont.)

- To obtain differentiability of the objective and constraints we might reformulate the problem, e.g:

$$
\operatorname{minimize} \max _{i=1, \ldots, n}\left(a_{i}^{\top} x\right)+b_{i}
$$

with nondifferentiable objective is equivalent to the LP:

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & a_{i} \top x+b \leq t, \quad i=1, \ldots, m . \\
& A x=b .
\end{aligned}
$$

Overview

Interior-point methods solve the problem (or the KKT conditions) by applying Newton's method to a sequence of equality-constrained problems. They form another level in the hierarchy of convex optimization algorithms:

- Linear equality constrained quadratic problems (LCQP) are the simplest (set of linear equations that can be solved analytically)
- Newton's method: reduces linear equality constrained convex optimization problems (LCCP) with twice differentiable objective to a sequence of $\angle C Q P$.
- Interior-point methods reduce a problem with linear equality and inequality constraints to a sequence of LCCP.

Logarithmic barrier function and central path

Problem reformulation

Our goal is to approximately formulate the inequality constrained problem as an equality constrained problem to which Newton's method can be applied. To this end we first hide the inequality constraint implicit in the objective:

$$
\begin{aligned}
\text { minimize } & f(x)+\sum_{i=1}^{m} I_{-}\left(g_{i}(x)\right) \\
\text { subject to } & A x=b,
\end{aligned}
$$

where $I_{-}: \mathbb{R} \rightarrow \mathbb{R}$ is the indicator function for nonpositive reals:

$$
I_{-}(u)= \begin{cases}0 & \text { if } u \leq 0, \\ +\infty & \text { if } u>0 .\end{cases}
$$

Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I_{-}by the convex and differentiable function

$$
\hat{I}_{-}(u)=-\frac{1}{t} \log (-u), \quad u<0
$$

where $t>0$ is a parameter that sets the accuracy of the prediction.

Problem reformulation

Subsituting \hat{I}_{-}for I_{-}in the optimization problem gives the approximation:
minimize $f(x)+\sum_{i=1}^{m}-\frac{1}{t} \log \left(-g_{i}(x)\right)$
subject to $A x=b$,
The objective function of this problem is convex and twice differentiable, so Newton's method can be used to solve it. Of course this problem is just an approximation to the original problem. We will see that the quality of the approximation of the solution increases when t increases.

Logarithmic barrier function

The function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right)
$$

is called the logarithmic barrier or log barrier for the original optimization problem. Its domain is the set of points that satisfy all inequality constraints strictly, and it grows without bound if $g_{i}(x) \rightarrow 0$ for any i. Its gradient and Hessian are given by:

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-g_{i}(x)} \nabla g_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{g_{i}(x)^{2}} \nabla g_{i}(x) \nabla g_{i}(x)^{\top}+\sum_{i=1}^{m} \frac{1}{-g_{i}(x)} \nabla^{2} g_{i}(x)
\end{aligned}
$$

Central path

Our approximate problem is therefore (equivalent to) the following problem:

$$
\begin{aligned}
\text { minimize } & t f(x)+\phi(x) \\
\text { subject to } & A x=b
\end{aligned}
$$

We assume for now that this problem can be solved via Newton's method, in particular that it has a unique solution $x^{*}(t)$ for each $t>0$.

The central path is the set of solutions, i.e.:

$$
\left\{x^{*}(t) \mid t>0\right\} .
$$

Characterization of the central path

A point $x^{*}(t)$ is on the central path if and only if:

- it is strictly feasible, i.e., satisfies:

$$
A x^{*}(t)=b, \quad g_{i}\left(x^{*}(t)\right)<0, \quad i=1, \ldots, m .
$$

- there exists a $\hat{\lambda} \in \mathbb{R}^{p}$ such that:

$$
\begin{aligned}
0 & =t \nabla f\left(x^{*}(t)\right)+\nabla \phi\left(x^{*}(t)\right)+A^{\top} \hat{\lambda} \\
& =t \nabla f\left(x^{*}(t)\right)+\sum_{i=1}^{m} \frac{1}{-g_{i}\left(x^{*}(t)\right)} \nabla g_{i}\left(x^{*}(t)\right)+A^{\top} \hat{\lambda} .
\end{aligned}
$$

Example: LP central path

The log barrier for a LP:

minimize $c^{\top} x$
subject to $A x \leq b$,

is given by

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{\top} x\right),
$$

where a_{i} is the i th row of A . Its derivatives are:

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{b_{i}-a_{i}^{\top} x} a_{i}, \quad \nabla^{2} \phi(x)=\sum_{i=1}^{m} \frac{1}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} a_{i} a_{i}^{\top} .
$$

Example (cont.)

The derivatives can be rewritten more compactly:

$$
\nabla \phi(x)=A^{\top} d, \quad \nabla^{2} \phi(x)=A^{\top} \operatorname{diag}(d)^{2} A,
$$

where $d \in \mathbb{R}^{m}$ is defined by $d_{i}=1 /\left(b_{i}-a_{i}^{\top} x\right)$. The centrality condition for $x^{*}(t)$ is:

$$
t c+A^{\top} d=0
$$

\Longrightarrow at each point on the central path, $\nabla \phi(x)$ is parallel to $-c$.

Dual points on central path

Remember that $x=x^{*}(t)$ if there exists a w such that
$t \nabla f\left(x^{*}(t)\right)+\sum_{i=1}^{m} \frac{1}{-g_{i}\left(x^{*}(t)\right)} \nabla g_{i}\left(x^{*}(t)\right)+A^{\top} \hat{\lambda}=0, \quad A x=b$.
Let us now define:

$$
\mu_{i}^{*}(t)=-\frac{1}{t g_{i}\left(x^{*}(t)\right)}, \quad i=1, \ldots, m, \quad \lambda^{*}(t)=\frac{\hat{\lambda}}{t} .
$$

We claim that the pair $\lambda^{*}(t), \mu^{*}(t)$ is dual feasible.

Dual points on central path (cont.)

Indeed:

- $\mu^{*}(t)>0$ because $g_{i}\left(x^{*}(t)\right)<0$
- $x^{*}(t)$ minimizes the Lagrangian

$$
L\left(x, \lambda^{*}(t), \mu^{*}(t)\right)=f(x)+\sum_{i=1}^{m} \mu_{i}^{*}(t) g_{i}(x)+\lambda^{*}(t)^{\top}(A x-b) .
$$

Therefore the dual function $q\left(\mu^{*}(t), \lambda^{*}(t)\right)$ is finite and:

$$
q\left(\mu^{*}(t), \lambda^{*}(t)\right)=L\left(x^{*}(t), \lambda^{*}(t), \mu^{*}(t)\right)=f\left(x^{*}(t)\right)-\frac{m}{t}
$$

Convergence of the central path

From the equation:

$$
q\left(\mu^{*}(t), \lambda^{*}(t)\right)=f\left(x^{*}(t)\right)-\frac{m}{t}
$$

we deduce that the duality gap associated with $x^{*}(t)$ and the dual feasible pair $\lambda^{*}(t), \mu^{*}(t)$ is simply m / t. As an important consequence we have:

$$
f\left(x^{*}(t)\right)-f^{*} \leq \frac{m}{t}
$$

This confirms the intuition that $f\left(x^{*}(t)\right) \rightarrow f^{*}$ if $t \rightarrow \infty$.

Interpretation via KKT conditions

We can rewrite the conditions for x to be on the central path by the existence of λ, μ such that:

1. Primal constraints: $g_{i}(x) \leq 0, A x=b$
2. Dual constraints : $\mu \geq 0$
3. approximate complementary slackness: $-\mu_{i} g_{i}(x)=1 / t$
4. gradient of Lagrangian w.r.t. x vanishes:

$$
\nabla f(x)+\sum_{i=1}^{m} \mu_{i} \nabla g_{i}(x)+A^{\top} \lambda=0
$$

The only difference with KKT is that 0 is replaced by $1 / t$ in 3. For "large" t, the point on the central path "almost" satisfies the KKT conditions.

The barrier method

Motivations

We have seen that the point $x^{*}(t)$ is m / t-suboptimal. In order to solve the optimization problem with a guaranteed specific accuracy $\epsilon>0$, it suffices to take $t=m / \epsilon$ and solve the equality constrained problem:

$$
\begin{aligned}
\operatorname{minimize} & \frac{m}{\epsilon} f(x)+\phi(x) \\
\text { subject to } & A x=b
\end{aligned}
$$

by Newton's method. However this only works for small problems, good starting points and moderate accuracy. It is rarely, if ever, used.

Barrier method

- given strictly feasible $x, t=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.
- repeat

1. Centering step: compute $x^{*}(t)$ by minimizing $t f+\phi$, subject to $A x=b$
2. Update: $x:=x^{*}(t)$.
3. Stopping criterion: quit if $m / t<\epsilon$.
4. Increase t: $t:=\mu t$.

Barrier method: Centering

- Centering is usually done with Newton's method, starting at current x
- Inexact centering is possible, since the goal is only to obtain a sequence of points $x^{(k)}$ that converges to an optimal point. In practice, however, the cost of computing an extremely accurate minimizer of $t f_{0}+\phi$ as compared to the cost of computing a good minimizer is only marginal.

Barrier method: choice of μ

The choice of μ involves a trade-off

- For small μ, the initial point of each Newton process is good and few Newton iterations are required; however, many outer loops (update of t) are required.
- For large μ, many Newton steps are required after each update of t, since the initial point is probably not very good. However few outer loops are required.
- In practice $\mu=10-20$ works well.

Barrier method: choice of $t^{(0)}$

The choice of $t^{(0)}$ involves a simple trade-off

- if $t^{(0)}$ is chosen too large, the first outer iteration will require too many Newton iterations
- if $t^{(0)}$ is chosen too small, the algorithm will require extra outer iterations

Several heuristics exist for this choice.

Example: LP in inequality form

- $m=100$ inequalities, $n=50$ variables.
- start with x on central paht $\left(t^{(0)}=1\right.$, duality gap 100), terminates when $t=10^{8}$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu>10$

Example: A family of standard LP

minimize $c^{\top} x \quad$ subject to $A x=b, x \geq 0$
for $A \in \mathbb{R}^{m \times 2 m}$. Test for $m=10, \ldots, 1000$:

The number of iterations grows very slowly as m ranges over a 100:1 ratio.

Feasibility and phase I methods

The barrier method requires a strictly feasible starting point $x^{(0)}$:

$$
g_{i}\left(x^{(0)}\right)<0, i=1, \ldots, m \quad A x^{(0)}=0 .
$$

When such a point is not known, the barrier method is preceded by a preliminary stage, called phase I, in which a strictly feasible point is computed.

Basic phase I method

$$
\begin{aligned}
\operatorname{minimize} & s \\
\text { subject to } & g_{i}(x) \leq s, \quad i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

- this problem is always strictly feasible (choose any x, and s large enough).
- apply the barrier method to this problem = phase $/$ optimization problem.
- If x, s feasible with $s<0$ then x is strictly feasible for the initial problem
- If $f^{*}>0$ then the original problem is infeasible.

Primal-dual interior-point methods

A variant of the barrier method, more efficient when high accurary is needed

- update primal and dual variables at each iteration: no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method

