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Motivations

minimize f(x)

subject to x ∈ X ,

gj(x) ≤ 0 , j = 1, . . . , r ,

where X is a finite set (e.g., 0 − 1-valued vectors).

Many problems involve integer constraints

Applications in scheduling, resource allocation,
engineering design...

Diverse methodology for their solution, but an important
subset of this methodology relies on the solution of
continuous optimization subproblems, as well as on
duality.
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Outline

Network optimization and unimodularity

Examples of nonunimodular problems

Branch-and-bound

Lagrange relaxation
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Network optimization and
unimodularity
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Network optimization

Let a directed graph with set of nodes N and set of arcs
(i, j) ∈ A.

An integer-constrained network optimization problem is:

minimize
∑

(i,j)∈A

aijxij

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si ,∀i ∈ N

bij ≤ xij ≤ cij ,∀(i, j) ∈ A

xij ∈ N .

Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.5/30



Example: transportation optimization

Nodes are locations (cities, warehouses, or factories)
where a certain product is produced or consumed

Arcs are transportation links between the locations

ai,j is the transportation cost per unit transported
between locations i and j.

The problem is to move the product from the production
points to the consumption points at minimum costs
while observing the capacity constraints of the
transportation links

si is the supply provided by node i to the outside world.
It is equal to the difference between the total flows
coming in and out.
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Example: shortest path

Given a starting node s and a destination node t, let the
“supply”:

si =











1 if i = s,

−1 if i = t,

0 otherwise.

and let the constraint xij ∈ {0, 1}.

Let aij be the distance between locations i and j.

Any feasible solution corresponds to a path between s

and t

This problem is therefore that of finding the shortest
path between s and t.
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Relaxing constraints

The most important property of the network optimization
problem is that the integer constraint can be neglected

The relaxed problem (a LP without integer constraint)
has the same optimal value as the integer-constrained
original

Great significance since the relaxed problem can be
solved using efficient linear (not integer) programming
algorithms.
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Unimodularity property

A square matrix A with integer components is
unimodular if its determinant is 0, 1 or −1.

If A is invertible and unimodular, the inverse matrix A−1

has integer components. Hence the solution x of the
system Ax = b is integer for every integer vector b.

A rectangular matrix with integer components is called
totally unimodular if each of its square submatrices is
unimodular

Key fact: A polyhedron {x|Ex = d, b ≤ x ≤ c} has integer
extreme points if E is totally unimodular and b, c and d

have integer components
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Unimodularity of network optimization

minimize a>x

subject to Ex = d , d ≤ x ≤ c .

The fundamental theorem of linear programming states
that the solution to a linear program is an extreme point
of the polyhedron of feasible points.

The constraint matrix for the network optimization
problem is the arc incidence matrix for the underlying
graph. We can show that it is totally unimodular (by
induction, left as exercise)

Therefore the problem is unimodular: the solution of the
LP has integer values!

However, unimodularity is an exceptional property...
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Example: shortest path as a LP

4
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B

C

1

2
3

5

minimize x1 + x2 + x3 + x4 + x5

subject to x1 − x2 = 1 ,

x3 − x1 − x5 = 0 ,

x2 + x4 − x3 = 0 ,

x5 − x4 = −1 ,

0 ≤ xi ≤ 1 , i = 1, . . . , 5 .

See script shortestpath.m
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Examples of nonunimodular
problems
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Generalized assignment problem

m jobs must be assigned to n machines

If job i is performed at machine j it costs aij and
requires tij time units.

Each job must be performed in its entirety at a single
machine

Goal: find a minimum cost assignment of the jobs to the
machines, given the total available time Tj at machine j.
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Formalization

Let xij ∈ {0, 1} indicate whether job i is assigned to
machine j.

Each job must be assigned to some machine:
∑n

j=1 xij = 1.

Limit in the total working time of machine j:
∑m

i=1 xijtij ≤ Tj

Total cost is
∑m

i=1

∑n
j=1 xijaij
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Optimization problem

minimize
m

∑

i=1

n
∑

j=1

xijaij

subject to
n

∑

j=1

xij = 1 , i = 1, . . . ,m

m
∑

i=1

xijtij ≤ Tj , j = 1, . . . , n ,

xij ∈ {0, 1} , i = 1, . . . ,m, j = 1, . . . , n. .

Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.15/30



Other problems

Facility location problem: select a subset of locations
from a given candidate set, and place in each of these
locations a facility that will serve the needs of certain
clients up to a given capacity bound (minimize the cost)

Traveling salesman problem: find a minimum cost tour
that visits each of N given cities exactly once and
returns to the starting city.

Separable resource allocation problems: optimally
produce a given amount of product using n production
units

(see Bertsekas sec. 5.5)
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Approaches to discrete programming

Enumeration of the finite set of all feasible solutions,
and comparison to obtain an optimal solution (rarely
practical)

Constraint relaxation and heuristic rounding:
neglect the integer constraints
solve the problem using linear/nonlinear
programming methods
if a noninteger solution is obtained, round it to
integer using a heuristic
sometimes, with favorable structure, clever problem
formulation, and good heuristic, this works
remarkably well.
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Branch-and-bound
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Motivations

Combines the preceding two approaches (enumeration
and constraint relaxation)

It uses constraint relaxation and solution of noninteger
problems to obtain certain lower bounds that are used
to discard large portions of the feasible set

In principle it can find an optimal (integer) solution, but
this may require unacceptable long time

In practice, usually it is terminated with a heuristically
obtained integer solution, often derived by rounding a
noninteger solution.
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Principle of branch-and-bound

Consider minimizing f(x) over a finite set x ∈ X.

Let Y1 and Y2 be two subsets of X for which we have
bounds:

m1 ≤ min
x∈Y1

f(x), M2 ≥ min
x∈Y2

f(x) .

If M2 ≤ m1 then the solutions in Y1 may be disregarded
since their cost cannot be smaller than the cost of the
best solution in Y2.
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Illustration

The branch-and-bound method uses suitable upper and
lower bounds, and the bounding principle to eliminate
substantial portions of X. It uses a tree, with nodes that
correspond to subsets of X, usually obtained by binary
partition.
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Algorithm

Initialization: OPEN={X}, UPPER=+∞

While OPEN is nonempty
Remove a node Y from OPEN
For each child Yi of Y , find the lower bound mi and a
feasible solution x̄ ∈ Yi.
If mi < UPPER place Yi in OPEN
If in addition f(x̄) < UPPER set UPPER = f(x̄) and
mark x̄ as the best solution found so far.

Termination: the best solution so far is optimal.

Tight lower bounds mi are important for quick termination!
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Example: facility location

m clients, n locations

xij ∈ {0, 1} indicates that client i is assigned to location j at cost aij .

yi ∈ {0, 1} indicates that a facility is placed at location j (at cost bj)

minimize
m

∑

i=1

n
∑

j=1

xijaij +

n
∑

j=1

bjyj

subject to
n

∑

j=1

xij = 1 , i = 1, . . . , m

m
∑

i=1

xijtij ≤ Tjyj , j = 1, . . . , n ,

xij ∈ {0, 1} , i = 1, . . . , m, j = 1, . . . , n. ,

yj ∈ {0, 1} , j = 1, . . . , n. .
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B&B for facility location

It is convenient to select subsets of the form:

X(J0, J1) = {(x, y) feasible : yj = 0,∀j ∈ J0, yj = 1,∀j ∈ J1} ,

where J0 and J1 are disjoint subsets of facility locations
(i.e., for all solutions in X(J0, J1), a facility is placed at
locations in J1, no facility is placed at the locations in J0,
and a facility may or may not be placed at the remaining
locations).

For each subset X(J0, J1) we can obtain a lower bound
and a feasible solution by solving the linear program
where all integer constraints are relaxed except that the
variables yj , j ∈ J0 ∪ J1 are fixed at either 0 or 1.
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Lagrangian relaxation
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Motivations

We have seen that obtaining lower bounds on the
optimal value of a discrete optimization problem is
important for branch-and-bound

Relaxing the discrete (integer) constraint is one
approach to obtain such lower bounds, by transforming
the integer problem into a LP or other continuous
problem

Here we consider another important method called
Lagrange relaxation, based on weak duality.
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Lagrangian relaxation

Remember that the dual of any problem (in particular
the subproblem of a node of the branch-and-bound
tree) is always concave, and its maximum provides a
lower bound on the optimal solution of the problem by
weak duality

In Lagrange relaxation, we use the dual optimal as a
lower bound to the primal subproblem

Essential for applying Lagrangian relaxation is that the
dual problem is easy to solve (e.g., LP).

Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.27/30



Comparison

Consider the problem:

minimize f(x)

subject to Ax ≤ b ,

x ∈ X ,

where f is convex and X is a discrete subset of R
n. Let f∗

be the optimal primal cost.
Which bound is the tightest between constraint and
Lagrange relaxation?
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Comparison (cont.)

The lower bound provided by Lagrangian relaxation is:

q∗ = sup
µ≥0

inf
x∈X

L(x, µ) ,

where L is the Lagrangian

The lower bound provided by constraint relaxation is:

f̂ = inf
Ax≤b

f(x)

By strong duality of the problem with relaxed constraints
(f is convex) we know that:

f̂ = ĝ = sup
µ≥0

inf
x∈Rn

L(x, µ) ≤ q∗ .
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Comparison (cont.)

The lower bound obtained by Lagrangian relaxation is
no worse than the lower bound obtained by constraint
relaxation

However computing the dual function may be
complicated (due to other constraints), and the
maximization of the dual may be nontrivial (in particular
it is typically nondifferentiable).
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