Heure | Nom | Sujet | Article | Lien |
10h | Rodrigo VERSCHAE | kernel design | K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. Advances in Neural Information Processing Systems 15, p.537-544, MIT Press, Cambridge, MA. 2003. | pdf |
10h10 | Sylvain VINET | kernel design | M. Seeger. Covariance Kernels from Bayesian Generative Models. In Adv. Neural Inform. Process. Syst. 14, pages 905-912, 2002. | pdf |
10h20 | Romain CAMPANA | séquences | M. Cuturi and J.-P. Vert, The context-tree kernel for strings, Neural Networks, 18(4):1111-1123, 2005. | pdf |
10h30 | Noufel ABBASSI | séquences | K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new discriminative kernel from probabilistic models. Neural Computation, 14(10):2397-2414, 2002. | pdf |
10h40 | Mael MONTEVIL | séquences/graph | Yan Karklin, Richard F Meraz, and Stephen R Holbrook. Classification of non-coding RNA using graph representations of secondary structure. Pac. Symp. Biocomput., pages 4-15, 2005. | pdf |
10h50 | Enric Meinhardt LLOPIS | séquences | V. Roth, J. Laub, J.M. Buhmann, K-R. Müller, Going metric: Denoising parwise data. Advances in Neutral Information Processing Systems 15, pp. 817-824, MIT Press, 2003. | pdf |
11h | Pierre ALLEGRAUD | text | J. Wang, W.-K. Sung, A. Krishnan, and K.-B. Li. Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines. BMC Bioinformatics, 6(1):174, Jul 2005. | pdf |
11h10 | Antoniou EUSTATHIOS | text | H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C. Watkins, Text Classification using string kernels, Journal of Machine Learning Research, 2(Feb):419-444, 2002. | pdf |
11h20 | Maria KULIKOVA | text | J. Hakenberg, S. Schmeier, A. Kowald, E. Klipp, and U. Leser. Finding kinetic parameters using text mining. OMICS, 8(2):131-152, 2004. | pdf |
| break | café |
11h30 | Mouna ENNAIMI | microarray | Zhenqiu Liu, Dechang Chen, and Halima Bensmail. Gene expression data classification with kernel principal component analysis. J Biomed Biotechnol, 2005(2):155-9, 2005. | pdf |
11h40 | Neus Sabater MUNOZ | microarray | J. Qin, D. P. Lewis, and W. S. Noble. Kernel hierarchical gene clustering from microarray expression data. Bioinformatics, 19(16):2097-2104, 2003. | pdf |
11h50 | Thomas CLEMENCEAU | microarray | I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn., 46(1/3):389-422, Jan 2002. | pdf |
12h | Julien MAIRAL | kernel method | J.-P. Vert and Y. Yamanishi. Supervised graph inference. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Adv. Neural Inform. Process. Syst., volume 17, pages 1433-1440. MIT Press, Cambridge, MA, 2005. | pdf |
12h10 | Mikhail ZASLAVSKIY | kernel method | K. Tsuda et al., The em algo for kernel matrix completion with auxiliary data. Journal of Machine Learning Research, 4(May):67-81, 2003. | pdf |
12h20 | Laurent JACOB | kernel method | T. Evgeniou, C. A. Micchelli and M. Pontil, Learning Multiple Tasks with Kernel Methods, Journal of Machine Learning Research, 6(Apr):615--637, 2005. | pdf |
excusé | Etienne COME | séquence | T. Jaakkola, M. Diekhans, and D. Haussler. A Discriminative Framework for Detecting Remote Protein Homologies. J. Comput. Biol., 7(1,2):95-114, 2000. | pdf |
annulé | Mohamed BOUHLEL | séquences | A. Zien, G. Rätsch, S. Mika, B. Schoelkopf, T. Lengauer, and K.-R. Müller. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 16(9):799-807, 2000. | pdf |