1. Getting started with Python for science¶
This part of the Scipy lecture notes is a self-contained introduction to everything that is needed to use Python for science, from the language itself, to numerical computing or plotting.
- 1.1. Scientific computing with tools and workflow
- 1.2. The Python language
- 1.2.1. First steps
- 1.2.2. Basic types
- 1.2.3. Control Flow
- 1.2.4. Defining functions
- 1.2.5. Reusing code: scripts and modules
- 1.2.6. Input and Output
- 1.2.7. Standard Library
- 1.2.8. Exception handling in Python
- 1.2.9. Object-oriented programming (OOP)
- 1.3. NumPy: creating and manipulating numerical data
- 1.3.1. The Numpy array object
- 1.3.2. Numerical operations on arrays
- 1.3.3. More elaborate arrays
- 1.3.4. Advanced operations
- 1.3.5. Some exercises
- 1.4. Matplotlib: plotting
- 1.4.1. Introduction
- 1.4.2. Simple plot
- 1.4.2.1. Plotting with default settings
- 1.4.2.2. Instantiating defaults
- 1.4.2.3. Changing colors and line widths
- 1.4.2.4. Setting limits
- 1.4.2.5. Setting ticks
- 1.4.2.6. Setting tick labels
- 1.4.2.7. Moving spines
- 1.4.2.8. Adding a legend
- 1.4.2.9. Annotate some points
- 1.4.2.10. Devil is in the details
- 1.4.3. Figures, Subplots, Axes and Ticks
- 1.4.4. Other Types of Plots: examples and exercises
- 1.4.5. Beyond this tutorial
- 1.4.6. Quick references
- 1.5. Scipy : high-level scientific computing
- 1.5.1. File input/output:
scipy.io
- 1.5.2. Special functions:
scipy.special
- 1.5.3. Linear algebra operations:
scipy.linalg
- 1.5.4. Fast Fourier transforms:
scipy.fftpack
- 1.5.5. Statistics and random numbers:
scipy.stats
- 1.5.6. Interpolation:
scipy.interpolate
- 1.5.7. Optimization and fit:
scipy.optimize
- 1.5.8. Numerical integration:
scipy.integrate
- 1.5.9. Summary exercises on scientific computing
- 1.5.1. File input/output:
- 1.6. Getting help and finding documentation