matplotlib

Travis-CI:

This Page

images_contours_and_fields example code: interpolation_none_vs_nearest.pyΒΆ

(Source code)

../../_images/interpolation_none_vs_nearest_00.png

(png, pdf)

../../_images/interpolation_none_vs_nearest_01.png

(png, pdf)

"""
Displays the difference between interpolation = 'none' and
interpolation = 'nearest'.

Interpolation = 'none' and interpolation = 'nearest' are equivalent when
converting a figure to an image file, such as a PNG.
Interpolation = 'none' and interpolation = 'nearest' behave quite
differently, however, when converting a figure to a vector graphics file,
such as a PDF.  As shown, Interpolation = 'none' works well when a big
image is scaled down, while interpolation = 'nearest' works well when a
small image is blown up.
"""

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook

# Load big image
big_im_path = cbook.get_sample_data('necked_tensile_specimen.png')
big_im = plt.imread(big_im_path)
# Define small image
small_im = np.array([[0.25, 0.75, 1.0, 0.75], [0.1, 0.65, 0.5, 0.4],
                     [0.6, 0.3, 0.0, 0.2], [0.7, 0.9, 0.4, 0.6]])

# Create a 2x2 table of plots
fig, axes = plt.subplots(figsize=[8.0, 7.5], ncols=2, nrows=2)

axes[0, 0].imshow(big_im, interpolation='none')
axes[0, 1].imshow(big_im, interpolation='nearest')
axes[1, 0].imshow(small_im, interpolation='none')
axes[1, 1].imshow(small_im, interpolation='nearest')
fig.subplots_adjust(left=0.24, wspace=0.2, hspace=0.1,
                    bottom=0.05, top=0.86)

# Label the rows and columns of the table
fig.text(0.03, 0.645, 'Big Image\nScaled Down', ha='left')
fig.text(0.03, 0.225, 'Small Image\nBlown Up', ha='left')
fig.text(0.383, 0.90, "Interpolation = 'none'", ha='center')
fig.text(0.75, 0.90, "Interpolation = 'nearest'", ha='center')

# If you were going to run this example on your local machine, you
# would save the figure as a PNG, save the same figure as a PDF, and
# then compare them.  The following code would suffice.
txt = fig.text(0.452, 0.95, 'Saved as a PNG', fontsize=18)
# plt.savefig('None_vs_nearest-png.png')
# txt.set_text('Saved as a PDF')
# plt.savefig('None_vs_nearest-pdf.pdf')

# Here, however, we need to display the PDF on a webpage, which means
# the PDF must be converted into an image.  For the purposes of this
# example, the 'Nearest_vs_none-pdf.pdf' has been pre-converted into
#'Nearest_vs_none-pdf.png' at 80 dpi.  We simply need to load and
# display it.
# The conversion is done with:
#  gs -dNOPAUSE -dBATCH -dDOINTERPOLATE -sDEVICE=pngalpha \
#     -sOutputFile=None_vs_nearest-pdf.png -r80 None_vs_nearest-pdf.pdf
pdf_im_path = cbook.get_sample_data('None_vs_nearest-pdf.png')
pdf_im = plt.imread(pdf_im_path)
fig2 = plt.figure(figsize=[8.0, 7.5])
fig2.figimage(pdf_im)

plt.show()

Keywords: python, matplotlib, pylab, example, codex (see Search examples)