# -*- noplot -*-
import matplotlib as mpl
import numpy as np
import sys
if sys.version_info[0] < 3:
import Tkinter as tk
else:
import tkinter as tk
import matplotlib.backends.tkagg as tkagg
from matplotlib.backends.backend_agg import FigureCanvasAgg
def draw_figure(canvas, figure, loc=(0, 0)):
""" Draw a matplotlib figure onto a Tk canvas
loc: location of top-left corner of figure on canvas in pixels.
Inspired by matplotlib source: lib/matplotlib/backends/backend_tkagg.py
"""
figure_canvas_agg = FigureCanvasAgg(figure)
figure_canvas_agg.draw()
figure_x, figure_y, figure_w, figure_h = figure.bbox.bounds
figure_w, figure_h = int(figure_w), int(figure_h)
photo = tk.PhotoImage(master=canvas, width=figure_w, height=figure_h)
# Position: convert from top-left anchor to center anchor
canvas.create_image(loc[0] + figure_w/2, loc[1] + figure_h/2, image=photo)
# Unfortunatly, there's no accessor for the pointer to the native renderer
tkagg.blit(photo, figure_canvas_agg.get_renderer()._renderer, colormode=2)
# Return a handle which contains a reference to the photo object
# which must be kept live or else the picture disappears
return photo
# Create a canvas
w, h = 300, 200
window = tk.Tk()
window.title("A figure in a canvas")
canvas = tk.Canvas(window, width=w, height=h)
canvas.pack()
# Generate some example data
X = np.linspace(0, 2.0*3.14, 50)
Y = np.sin(X)
# Create the figure we desire to add to an existing canvas
fig = mpl.figure.Figure(figsize=(2, 1))
ax = fig.add_axes([0, 0, 1, 1])
ax.plot(X, Y)
# Keep this handle alive, or else figure will disappear
fig_x, fig_y = 100, 100
fig_photo = draw_figure(canvas, fig, loc=(fig_x, fig_y))
fig_w, fig_h = fig_photo.width(), fig_photo.height()
# Add more elements to the canvas, potentially on top of the figure
canvas.create_line(200, 50, fig_x + fig_w / 2, fig_y + fig_h / 2)
canvas.create_text(200, 50, text="Zero-crossing", anchor="s")
# Let Tk take over
tk.mainloop()
Keywords: python, matplotlib, pylab, example, codex (see Search examples)