import matplotlib from numpy.random import randn import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter def to_percent(y, position): # Ignore the passed in position. This has the effect of scaling the default # tick locations. s = str(100 * y) # The percent symbol needs escaping in latex if matplotlib.rcParams['text.usetex'] is True: return s + r'$\%$' else: return s + '%' x = randn(5000) # Make a normed histogram. It'll be multiplied by 100 later. plt.hist(x, bins=50, normed=True) # Create the formatter using the function to_percent. This multiplies all the # default labels by 100, making them all percentages formatter = FuncFormatter(to_percent) # Set the formatter plt.gca().yaxis.set_major_formatter(formatter) plt.show()