import matplotlib.pyplot as plt import numpy as np dt = 0.0005 t = np.arange(0.0, 20.0, dt) s1 = np.sin(2*np.pi*100*t) s2 = 2*np.sin(2*np.pi*400*t) # create a transient "chirp" mask = np.where(np.logical_and(t > 10, t < 12), 1.0, 0.0) s2 = s2 * mask # add some noise into the mix nse = 0.01*np.random.random(size=len(t)) x = s1 + s2 + nse # the signal NFFT = 1024 # the length of the windowing segments Fs = int(1.0/dt) # the sampling frequency # Pxx is the segments x freqs array of instantaneous power, freqs is # the frequency vector, bins are the centers of the time bins in which # the power is computed, and im is the matplotlib.image.AxesImage # instance ax1 = plt.subplot(211) plt.plot(t, x) plt.subplot(212, sharex=ax1) Pxx, freqs, bins, im = plt.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900) plt.show()