""" Demonstration of using norm to map colormaps onto data in non-linear ways. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.mlab import bivariate_normal N = 100 ''' Custom Norm: An example with a customized normalization. This one uses the example above, and normalizes the negative data differently from the positive. ''' X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = (bivariate_normal(X, Y, 1., 1., 1.0, 1.0))**2 \ - 0.4 * (bivariate_normal(X, Y, 1.0, 1.0, -1.0, 0.0))**2 Z1 = Z1/0.03 # Example of making your own norm. Also see matplotlib.colors. # From Joe Kington: This one gives two different linear ramps: class MidpointNormalize(colors.Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ##### fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolormesh(X, Y, Z1, norm=MidpointNormalize(midpoint=0.), cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both') pcm = ax[1].pcolormesh(X, Y, Z1, cmap='RdBu_r', vmin=-np.max(Z1)) fig.colorbar(pcm, ax=ax[1], extend='both') fig.show()