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ABSTRACT

Analysis and interpretation of stained tumor sections is one
of the main tools in cancer diagnosis and prognosis, which
is mainly carried out manually by pathologists. The avent of
digital pathology provides us with the challenging opportu-
nity to automatically analyze large amounts of these complex
image data in order to draw biological conclusions from them
and to study cellular and tissular phenotypes at a large scale.
One of the bottlenecks for such approaches is the automa-
tic segmentation of cell nuclei from this type of image data.
Here, we present a fully automated workflow to segment nu-
clei from histopathology image data by using deep neural net-
works trained from a set of manually annotated images and
by processing the posterior probability maps in order to split
jointly segmented nuclei. Further, we provide the image data
set that has been generated for this study as a benchmark set
to the scientific community.

Index Terms— Deep Learning, Convolutional Neural
Networks, Nuclei Segmentation, Histopathology, Digital Pa-
thology, Breast Cancer, Cellular Phenotyping

1. INTRODUCTION

Today, large sequencing approaches build the main body of
cancer research programs and they have revolutionized our
understanding of the molecular basis of cancer. In clinical
practice however, molecular profiling is paralleled with the
more traditional (and mostly manual) analysis of stained his-
tological tumor sections. With the avent of digital pathology,
i.e. the scanning and digital storage of diseased tissue sec-
tions, it is now possible to build tools for the quantitative and
automatic analysis of these complex and informative image
data, which are complementary to genomic and expression
data.

For these reasons, analysis of histopathology data has
received much attention over the last years. In particular
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for approaches aiming at relating biologically relevant fea-
tures (such as phenotype distributions or heterogeneity mea-
sures) to clinical variables, segmentation of nuclei from tissue
images is essential.

However, segmentation of nuclei is a complicated task :
tissue type, staining differences and cell type convey them dif-
ferent visual characteristics, which makes it very difficult to
design traditional image segmentation algorithms that work
satisfactorily for all of these different cases. On the other
hand, deep learning algorithms have been used recently with
great success to complex segmentation tasks in biology[1, 2].

The contribution of this paper is three-fold : (1) we ge-
nerated a set of manually annotated, representative images
containing segmentation results for more than 2000 cells. We
believe that such datasets can trigger methodological deve-
lopments and are important for the field. (2) We apply a deep
neural network end-to-end strategy and demonstrate the su-
periority of this approach with respect to previously proposed
simpler architectures. (3) We propose a post-processing stra-
tegy of the posterior probabilities provided by the network.
This approach is based on mathematical morphology and un-
like many adhoc procedures allows a clearly defined and in-
tuitive criterion for the object splits.

2. RELATED WORK

Many traditional techniques have been proposed for the seg-
mentation of nuclei in histopathology images, ranging from
simple background subtraction and color threshold tech-
niques to much more sophisticated approaches, such as mar-
ked point processes[3]. Many of these methods have been
recently reviewed [4].

Alternative methods have arisen from the achieving
Convolutional neural networks. Recent advances in deep
neural networks, and in particular in their optimization have
made them become the state-of-the- art model for object
recognition. Deep neural network have also been used for se-
mantic segmentation, where [5] use ”de- convolution layers”
and up-sampling in order to identify and precisely locate



objects within a picture. Different architecture arising from
different intuition are also possible and have been applied in
this paper.

Learning based methods rely on annotated data sets. But
for the problem of nuclei segmentation in histopathology
images, there are only few manually segmented images freely
available. In [6], a partially annotated data set has been relea-
sed. However, this data set does not cover the morphological
variability typically encountered in real histopathology data.

Sample from patient 498959 Associated ground truth

Sample from patient 581910 Associated ground truth

Fig. 1. Random annotated samples from the dataset

3. DATA SET

One of the contributions of this paper is the now publicly
available nuclei detection dataset within HE stained histo-
pathology images which can be found at http://cbio.
mines-paristech.fr/˜pnaylor/BNS.zip. This
annotated dataset provides images clustered by patients. Each
patient has at least 3 annotated 512 × 512 HE histopatho-
logy images with their associated ground truth. Each ground
truth image is a 512 × 512 label image where each pixel
value above 0 is considered as the label of the correspon-
ding nucleus. See figure 1 for an example of three annotated
images. This annotation was conducted via the help of the
software ITK-snap, [7] http://www.itksnap.org by
the authors of this paper.

The patients were randomly picked from an unpublished
study on triple negative breast cancer (TNBC). For each of the
patients we had access to a biopsy and a whole slide image

(WSI). WSI are very large images and can be up to 60 GB
(uncompressed). As they cannot be stored in the RAM of a
standard computer, we randomly cropped 512× 512 samples
from the WSI. 3 to 7 images were choosen from the ran-
domly sampled images to try and give the most diverse da-
taset among these patients. Once the samples were choosen,
we fully annotated each nucleus via the software ITK-snap ;
touching nuclei were differentiated by the different label va-
lue.

In this data set we have annotated a considerable amount
of cells, including normal epithelial and myoepithelial breast
cells (localized in ducts and lobules), invasive carcinomatous
cells, fibroblasts, endothelial cells, adipocytes, macrophages
and inflammatory cells (lymphocytes and plasmocytes). For
the moment, we did not annotate the different cell types, ho-
wever.

In total, we have 33 images with a total of 2754 annotated
cells, the maximum number of cells in one sample is 293 and
the minimum number of cells in one sample is 5. We also have
on average 83 cells per sample with a high standard deviation
of 63.

4. METHODOLOGY

Let A be the space of RGB images, A can typically be
Rn×p×3 and let B the space B the space of annotation images,
in our case {0, 1}n×p. We have a set of (Al, Bl)l∈[1,N ] for a
supervised learning approach. Our goal is a prediction task
named as semantic segmentation, we wish to maximize the
prediction of an unseen element belonging to B given an new
element in A. We maximize thus prediction by modelizing our
prediction function as the softmax output of a deep neural net-
work. We find the model parameters by minimizing a log loss
function defined as : 1∑

i,j wij

∑
i,j

∑
k wi,jti,j,k log(p̂i,j,k) ,

where k designates a certain label, wi,j is a certain weight
given to pixel i, j, ti,j,k is equal to 1 if pixel i, j is of class
k and p̂i,j,k designates the estimated probability of pixel i, j
of being k via the softmax output of the neural network. We
minimize the loss function via stochastic gradient descent.

We have our training set (Al, Bl)l∈[1,N ] where N is equal
to 33, however each element Al belongs to a certain patients
and several elements Al can belong to the same patient. As
we are dealing with histopathology images, it is known that
samples can widely vary from one patient to the other. We
thus validate our model by a leave one patient out scheme.
For this reason we use a leave-one-patient-out strategy : for
a given set of hyper parameters, we train our model on every
patient except one that is used for validation. Our final score
is averaged over all patients. Several metrics give a detailed
assessment of the model quality : accuracy, intersection over
union (IU), F1 score and a performance score which is the
mean between true positive rate and true negative rate.

To train our models, as the number of available annota-
ted is scarse, we used a great number of transformation for
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the data augmentation. From an original size of 33 annotated
images, adding flips, rotations, bluriness and random elastic
deformations enabled us to have more then 400000 training
images. We also try out several hyperparameter configura-
tions : the learning rate and momentum for the stochastic gra-
dient descent, the weight decay value. In practice, we found
that hyperparameters tuning didn’t influence the scores much,
the exepction being the learning rate. If the learning rate was
not of the right magnitude the given network did not seem
to learn. We therefore fixed the momentum to be 0.9 and the
weight decay to be 5.10−5 for all of the experiments, the lear-
ning rate was tuned according to the model chosen. We also
experimented with different initialization values and if pos-
sible, we also considered pretrained layers. The use of pre-
trained layers made learning more efficient and made scores
more robust.

The results obtained by the Deep Neural Network were
encouraging, but touching nuclei were often segmented as
one single object. Solving this issue by weighting the error
term for pixels between objects did not solve the issue for
our case (data not shown). However, we did observe that for
touching and even partially overlapping nuclei, the posterior
probability at the nucleus border is systematically lower than
in the putative center of the nucleus, but may still be relati-
vely large. As in the center of nuclei, the posterior probabi-
lity is maximal, we can readily assume that the local maxima
of the posterior correspond to putative nuclei, which we call
candidates. Let X = (x1, x2, . . . , xN ) be a path that joins
two candidates (i.e. ∀i, xi and xi+1 are neighbor pixels) and
P = (p1, p2, . . . , pN ) the corresponding posterior probabi-
lities. Without loss of generality, we assume p1 ≤ PN . We
define for each path X a cost C(P) = maxi=2...N p1 − pi,
which is the maximal decrease in posterior probability along
the path, when starting from the candidate with lower proba-
bility. Considering all paths joining two candidates, we can
now state a criterion that allows us to decide whether to per-
form a split (and thus accept the candidates as being different
nuclei) or not : if all the paths involve a decrease in probability
larger than a parameter λ, we will perform a split. Conversely,
if we can find at least one path that joins the two candidates
with a probability decrease smaller or equal to λ, no split will
be performed : we argue that in this case, it is probably one
single object. Hence, the split is performed if :

min
P

C(P) = min
P
{ max
i=2...N

p1 − pi} > λ

where λ is a free parameter. This is actually nothing else
than the morphological dynamics[8]. The actual split loca-
tions are then obtained by applying the watershed algorithm
to the inverted posterior map, starting from the local minima
with morphological dynamics larger than a free parameter λ.
To speed up this procedure, we have developed an algorithm
that performs selection and Watershed algorithm in a single
pass by selectively building the Watershed line or fusing the
regions.

Original RGB sample Associated ground truth

PangNet Probability map Watershed

DeconvNet Probability map Watershed

FCN Probability map Watershed

Fig. 2. Prediction via different classifiers of a random sample
on the left out patient : 581910

5. DIFFERENT ARCHITECTURES

We experience with 3 known arhitectures in semantic seg-
mentation, named PangNet, Fully Convolutionnal Net (FCN)
and DeconvNet. The most basic architecture, PangNet, consists
of 4 convolutionnal layer where each convolutionnal layer has
8 feature map, for more information please refer to [9]. This
net, being not deep, has the advantage of being less computa-
tionnally intensive. FCN is a first attempt of applying ”deep
feature” representations to the task of semantic segmentation.
This architecture has the advantage of re-using a classical
deep learning architecture with additional upsampling and
skip layers. The upsampling layers enable the network to
learn a pixel level classification and the skip layers enable
the network to fuse different levels of abstraction to the fi-
nal prediction. This model can be fine tuned with a set of
pretrained-weights extracted from the classical deep learning
architecture[5]. DeconvNet is also based on a classical archi-



PangNet DeconvNet FCN Ensemble
Accuracy 0.936 0.968 0.958 0.968

IU 0.759 0.856 0.857 0.861
Recall 0.744 0.856 0.855 0.876

Precision 0.741 0.858 0.878 0.851
F1 0.742 0.856 0.866 0.863

Performance 0.853 0.918 0.916 0.928

Table 1. Results

tecture, however, in this network their are no skip layers as
one intends to learn the proper upsampling through repeated
deconvolution and convolution layers. This model can also
be fine tuned[10]. We also did an ensemble classifier of these
two previous nets as suggested in [10] but did not include any
illustration as the results of the FCN were better.

6. RESULTS AND DISCUSSION

We conducted our experiments on GPUs via the caffe frame-
work, [11]. We present our results in table 1 where we avera-
ged the metrics over all left out patients. We also added, for
illustration purposes 2, image predictions and associated pro-
bability maps to evaluate some differences between the clas-
sifiers. We notice that the simpler net, PangNet seems to have
learnt simple rules such as color information. As soon as the
nuclei are not homogeneous and dark inside, the method fails
( ”holes” in the cells). On the contrary, deeper nets as FCN
and DeconvNet have learnt deeper features and seem capable
of recognizing whole cells. On these probability maps we ap-
plied our watershed segmentation and we can picture the re-
sults in the third column. By construction, our post-processing
scheme is very sensitive to noise as we can see in the PangNet
prediction, many unrelated minimas will lead to highly par-
titionned cell. This phenomenom also appears with the De-
convNet where undesired cuts were performed, like for the
cell at the bottom left of the image. We picked λ = 7 which
seemed to give a nice partitionning of the image, this value
can be found by cross validation.

7. CONCLUSION

We presented a fully automized workflow for segmenting nu-
clei in histopathology images based on deep learning and ma-
thematical morphology. We have also generated a manually
curated segmentation data base, which we make publicly
available. We believe that such a method can become very
useful for the investigation of cellular phenotypes at a tissue
level and their relation to disease.
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