2.5.2.2.7. Block Compressed Row Format (BSR)¶
basically a CSR with dense sub-matrices of fixed shape instead of scalar items
block size (R, C) must evenly divide the shape of the matrix (M, N)
- three NumPy arrays: indices, indptr, data
- indices is array of column indices for each block
- data is array of corresponding nonzero values of shape (nnz, R, C)
- ...
- subclass of
_cs_matrix
(common CSR/CSC functionality) - subclass of
_data_matrix
(sparse matrix classes with .data attribute)
- subclass of
- subclass of
fast matrix vector products and other arithmetics (sparsetools)
- constructor accepts:
- dense matrix (array)
- sparse matrix
- shape tuple (create empty matrix)
- (data, ij) tuple
- (data, indices, indptr) tuple
many arithmetic operations considerably more efficient than CSR for sparse matrices with dense sub-matrices
- use:
- like CSR
- vector-valued finite element discretizations
2.5.2.2.7.1. Examples¶
create empty BSR matrix with (1, 1) block size (like CSR...):
>>> mtx = sparse.bsr_matrix((3, 4), dtype=np.int8) >>> mtx <3x4 sparse matrix of type '<... 'numpy.int8'>' with 0 stored elements (blocksize = 1x1) in Block Sparse Row format> >>> mtx.todense() matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
create empty BSR matrix with (3, 2) block size:
>>> mtx = sparse.bsr_matrix((3, 4), blocksize=(3, 2), dtype=np.int8) >>> mtx <3x4 sparse matrix of type '<... 'numpy.int8'>' with 0 stored elements (blocksize = 3x2) in Block Sparse Row format> >>> mtx.todense() matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
- a bug?
create using (data, ij) tuple with (1, 1) block size (like CSR...):
>>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> mtx = sparse.bsr_matrix((data, (row, col)), shape=(3, 3)) >>> mtx <3x3 sparse matrix of type '<... 'numpy.int64'>' with 6 stored elements (blocksize = 1x1) in Block Sparse Row format> >>> mtx.todense() matrix([[1, 0, 2], [0, 0, 3], [4, 5, 6]]...) >>> mtx.data array([[[1]], [[2]], [[3]], [[4]], [[5]], [[6]]]...) >>> mtx.indices array([0, 2, 2, 0, 1, 2], dtype=int32) >>> mtx.indptr array([0, 2, 3, 6], dtype=int32)
create using (data, indices, indptr) tuple with (2, 2) block size:
>>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2) >>> mtx = sparse.bsr_matrix((data, indices, indptr), shape=(6, 6)) >>> mtx.todense() matrix([[1, 1, 0, 0, 2, 2], [1, 1, 0, 0, 2, 2], [0, 0, 0, 0, 3, 3], [0, 0, 0, 0, 3, 3], [4, 4, 5, 5, 6, 6], [4, 4, 5, 5, 6, 6]]) >>> data array([[[1, 1], [1, 1]], [[2, 2], [2, 2]], [[3, 3], [3, 3]], [[4, 4], [4, 4]], [[5, 5], [5, 5]], [[6, 6], [6, 6]]])