2. Advanced topicsΒΆ
This part of the Scipy lecture notes is dedicated to advanced usage. It strives to educate the proficient Python coder to be an expert and tackles various specific topics.
- 2.1. Advanced Python Constructs
- 2.1.1. Iterators, generator expressions and generators
- 2.1.2. Decorators
- 2.1.2.1. Replacing or tweaking the original object
- 2.1.2.2. Decorators implemented as classes and as functions
- 2.1.2.3. Copying the docstring and other attributes of the original function
- 2.1.2.4. Examples in the standard library
- 2.1.2.5. Deprecation of functions
- 2.1.2.6. A
while
-loop removing decorator - 2.1.2.7. A plugin registration system
- 2.1.3. Context managers
- 2.2. Advanced Numpy
- 2.2.1. Life of ndarray
- 2.2.2. Universal functions
- 2.2.3. Interoperability features
- 2.2.4. Array siblings:
chararray
,maskedarray
,matrix
- 2.2.5. Summary
- 2.2.6. Contributing to Numpy/Scipy
- 2.3. Debugging code
- 2.4. Optimizing code
- 2.5. Sparse Matrices in SciPy
- 2.5.1. Introduction
- 2.5.2. Storage Schemes
- 2.5.2.1. Common Methods
- 2.5.2.2. Sparse Matrix Classes
- 2.5.2.3. Summary
- 2.5.3. Linear System Solvers
- 2.5.4. Other Interesting Packages
- 2.6. Image manipulation and processing using Numpy and Scipy
- 2.7. Mathematical optimization: finding minima of functions
- 2.7.1. Knowing your problem
- 2.7.2. A review of the different optimizers
- 2.7.3. Practical guide to optimization with scipy
- 2.7.4. Special case: non-linear least-squares
- 2.7.5. Optimization with constraints
- 2.8. Interfacing with C