sirna references

[Zuker1989finding] M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244(4900):48-52, Apr 1989. [ bib ]
An algorithm and a computer program have been prepared for determining RNA secondary structures within any prescribed increment of the computed global minimum free energy. The mathematical problem of determining how well defined a minimum energy folding is can now be solved. All predicted base pairs that can participate in suboptimal structures may be displayed and analyzed graphically. Representative suboptimal foldings are generated by selecting these base pairs one at a time and computing the best foldings that contain them. A distance criterion that ensures that no two structures are "too close" is used to avoid multiple generation of similar structures. Thermodynamic parameters, including free-energy increments for single-base stacking at the ends of helices and for terminal mismatched pairs in interior and hairpin loops, are incorporated into the underlying folding model of the above algorithm.

Keywords: sirna
[Cogoni1996Transgene] C. Cogoni, J. T. Irelan, M. Schumacher, T. J. Schmidhauser, E. U. Selker, and G. Macino. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J., 15(12):3153-3163, Jun 1996. [ bib | http | .pdf ]
The molecular mechanisms involved in transgene-induced gene silencing ('quelling') in Neurospora crassa were investigated using the carotenoid biosynthetic gene albino-1 (al-1) as a visual marker. Deletion derivatives of the al-1 gene showed that a transgene must contain at least approximately 132 bp of sequences homologous to the transcribed region of the native gene in order to induce quelling. Transgenes containing only al-1 promoter sequences do not cause quelling. Specific sequences are not required for gene silencing, as different regions of the al-1 gene produced quelling. A mutant defective in cytosine methylation (dim-2) exhibited normal frequencies and degrees of silencing, indicating that cytosine methylation is not responsible for quelling, despite the fact that methylation of transgene sequences frequently is correlated with silencing. Silencing was shown to be a dominant trait, operative in heterokaryotic strains containing a mixture of transgenic and non-transgenic nuclei. This result indicates that a diffusable, trans-acting molecule is involved in quelling. A transgene-derived, sense RNA was detected in quelled strains and was found to be absent in their revertants. These data are consistent with a model in which an RNA-DNA or RNA-RNA interaction is involved in transgene-induced gene silencing in Neurospora.

Keywords: sirna
[Fire1998Potent] A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669):806-811, Feb 1998. [ bib | DOI | http | .pdf ]
Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.

Keywords: sirna
[Mathews1999Expanded] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol., 288(5):911-40, May 1999. [ bib | DOI | http ]
An improved dynamic programming algorithm is reported for RNA secondary structure prediction by free energy minimization. Thermodynamic parameters for the stabilities of secondary structure motifs are revised to include expanded sequence dependence as revealed by recent experiments. Additional algorithmic improvements include reduced search time and storage for multibranch loop free energies and improved imposition of folding constraints. An extended database of 151,503 nt in 955 structures? determined by comparative sequence analysis was assembled to allow optimization of parameters not based on experiments and to test the accuracy of the algorithm. On average, the predicted lowest free energy structure contains 73 % of known base-pairs when domains of fewer than 700 nt are folded; this compares with 64 % accuracy for previous versions of the algorithm and parameters. For a given sequence, a set of 750 generated structures contains one structure that, on average, has 86 % of known base-pairs. Experimental constraints, derived from enzymatic and flavin mononucleotide cleavage, improve the accuracy of structure predictions.

Keywords: sirna
[Zamore2000RNAi] P.D. Zamore, T. Tuschl, P.A. Sharp, and D.P. Bartel. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1):25-33, Mar 2000. [ bib | DOI | http ]
Double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Using a recently developed Drosophila in vitro system, we examined the molecular mechanism underlying RNAi. We find that RNAi is ATP dependent yet uncoupled from mRNA translation. During the RNAi reaction, both strands of the dsRNA are processed to RNA segments 21-23 nucleotides in length. Processing of the dsRNA to the small RNA fragments does not require the targeted mRNA. The mRNA is cleaved only within the region of identity with the dsRNA. Cleavage occurs at sites 21-23 nucleotides apart, the same interval observed for the dsRNA itself, suggesting that the 21-23 nucleotide fragments from the dsRNA are guiding mRNA cleavage.

Keywords: sirna
[Elbashir2001RNA] S. M. Elbashir, W. Lendeckel, and T. Tuschl. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev., 15(2):188-200, Jan 2001. [ bib ]
Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3' ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.

Keywords: sirna
[Caplen2001Specific] N. J. Caplen, S. Parrish, F. Imani, A. Fire, and R. A. Morgan. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA, 98(17):9742-9747, Aug 2001. [ bib | DOI | http | .pdf ]
Short interfering RNAs (siRNAs) are double-stranded RNAs of approximately 21-25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates. siRNAs have a characteristic structure, with 5'-phosphate/3'-hydroxyl ends and a 2-base 3' overhang on each strand of the duplex. In this study, we present data that synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice. In each case, the interference by siRNAs was superior to the inhibition of gene expression mediated by single-stranded antisense oligonucleotides. The siRNAs seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells. These observations may open a path toward the use of siRNAs as a reverse genetic and therapeutic tool in mammalian cells.

Keywords: sirna
[Elbashir2001Duplexes] S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836):494-498, May 2001. [ bib | DOI | http | .pdf ]
RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. The mediators of sequence-specific messenger RNA degradation are 21- and 22-nucleotide small interfering RNAs (siRNAs) generated by ribonuclease III cleavage from longer dsRNAs. Here we show that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells. Therefore, 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.

Keywords: sirna
[Surabhi2002RNA] R. M. Surabhi and R. B. Gaynor. RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J. Virol., 76(24):12963-12973, Dec 2002. [ bib ]
Human immunodeficiency virus type 1 (HIV-1) gene expression is regulated by both cellular transcription factors and Tat. The ability of Tat to stimulate transcriptional elongation is dependent on its binding to TAR RNA in conjunction with cyclin T1 and CDK9. A variety of other cellular factors that bind to the HIV-1 long terminal repeat, including NF-kappaB, SP1, LBP, and LEF, are also important in the control of HIV-1 gene expression. Although these factors have been demonstrated to regulate HIV-1 gene expression by both genetic and biochemical analysis, in most cases a direct in vivo demonstration of their role on HIV-1 replication has not been established. Recently, the efficacy of RNA interference in mammalian cells has been shown utilizing small interfering RNAs (siRNAs) to result in the specific degradation of host mRNAs and decreases the levels of their corresponding proteins. In this study, we addressed whether siRNAs directed against either HIV-1 tat or reverse transcriptase or the NF-kappaB p65 subunit could specifically decrease the levels of these proteins and thus alter HIV-1 replication. Our results demonstrate the specificity of siRNAs for decreasing the expression of these viral and cellular proteins and inhibiting HIV-1 replication. These studies suggest that RNA interference is useful in exploring the biological role of cellular and viral regulatory factors involved in the control of HIV-1 gene expression.

Keywords: sirna
[Rhoades2002Prediction] Matthew W Rhoades, Brenda J Reinhart, Lee P Lim, Christopher B Burge, Bonnie Bartel, and David P Bartel. Prediction of plant microrna targets. Cell, 110(4):513-520, Aug 2002. [ bib | .pdf ]
We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages.

Keywords: sirna
[McManus2002Gene] M. T. McManus and P. A. Sharp. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet., 3(10):737-747, Oct 2002. [ bib | DOI | http | .pdf ]
Among the 3 billion base pairs of the human genome, there are approximately 30,000-40,000 protein-coding genes, but the function of at least half of them remains unknown. A new tool - short interfering RNAs (siRNAs) - has now been developed for systematically deciphering the functions and interactions of these thousands of genes. siRNAs are an intermediate of RNA interference, the process by which double-stranded RNA silences homologous genes. Although the use of siRNAs to silence genes in vertebrate cells was only reported a year ago, the emerging literature indicates that most vertebrate genes can be studied with this technology.

Keywords: sirna
[Holen2002Positional] T. Holen, M. Amarzguioui, M. T. Wiiger, E. Babaie, and H. Prydz. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res., 30(8):1757-1766, Apr 2002. [ bib ]
Chemically synthesised 21-23 bp double-stranded short interfering RNAs (siRNA) can induce sequence-specific post-transcriptional gene silencing, in a process termed RNA interference (RNAi). In the present study, several siRNAs synthesised against different sites on the same target mRNA (human Tissue Factor) demonstrated striking differences in silencing efficiency. Only a few of the siRNAs resulted in a significant reduction in expression, suggesting that accessible siRNA target sites may be rare in some human mRNAs. Blocking of the 3'-OH with FITC did not reduce the effect on target mRNA. Mutations in the siRNAs relative to target mRNA sequence gradually reduced, but did not abolish mRNA depletion. Inactive siRNAs competed reversibly with active siRNAs in a sequence-independent manner. Several lines of evidence suggest the existence of a near equilibrium kinetic balance between mRNA production and siRNA-mediated mRNA depletion. The silencing effect was transient, with the level of mRNA recovering fully within 4-5 days, suggesting absence of a propagative system for RNAi in humans. Finally, we observed 3' mRNA cleavage fragments resulting from the action of the most effective siRNAs. The depletion rate-dependent appearance of these fragments argues for the existence of a two-step mRNA degradation mechanism.

Keywords: sirna
[Schwarz2003Asymmetry] D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2):199-208, Oct 2003. [ bib | DOI | http | .pdf ]
A key step in RNA interference (RNAi) is assembly of the RISC, the protein-siRNA complex that mediates target RNA cleavage. Here, we show that the two strands of an siRNA duplex are not equally eligible for assembly into RISC. Rather, both the absolute and relative stabilities of the base pairs at the 5? ends of the two siRNA strands determine the degree to which each strand participates in the RNAi pathway. siRNA duplexes can be functionally asymmetric, with only one of the two strands able to trigger RNAi. Asymmetry is the hallmark of a related class of small, single-stranded, noncoding RNAs, microRNAs (miRNAs). We suggest that single-stranded miRNAs are initially generated as siRNA-like duplexes whose structures predestine one strand to enter the RISC and the other strand to be destroyed. Thus, the common step of RISC assembly is an unexpected source of asymmetry for both siRNA function and miRNA biogenesis.

Keywords: sirna
[Lewis2003Prediction] Benjamin P Lewis, I hung Shih, Matthew W Jones-Rhoades, David P Bartel, and Christopher B Burge. Prediction of mammalian microrna targets. Cell, 115(7):787-798, Dec 2003. [ bib ]
MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

Keywords: sirna
[Khvorova2003Functional] A. Khvorova, A. Reynolds, and S.D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2):209-216, Oct 2003. [ bib | DOI | http | .pdf ]
Both microRNAs (miRNA) and small interfering RNAs (siRNA) share a common set of cellular proteins (Dicer and the RNA-induced silencing complex [RISC]) to elicit RNA interference. In the following work, a statistical analysis of the internal stability of published miRNA sequences in the context of miRNA precursor hairpins revealed enhanced flexibility of miRNA precursors, especially at the 5?-anti-sense (AS) terminal base pair. The same trend was observed in siRNA, with functional duplexes displaying a lower internal stability (?0.5 kcal/mol) at the 5?-AS end than nonfunctional duplexes. Average internal stability of siRNA molecules retrieved from plant cells after introduction of long RNA sequences also shows this characteristic thermodynamic signature. Together, these results suggest that the thermodynamic properties of siRNA play a critical role in determining the molecule's function and longevity, possibly biasing the steps involved in duplex unwinding and strand retention by RISC.

Keywords: sirna
[Jorgensen2003Sense] R. A. Jorgensen. Sense cosuppression in plants: Past, present, and future. In G. J. Hannon, editor, RNAi: A guide to gene silencing. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2003. [ bib ]
Keywords: sirna
[Jackson2003Expression] A. L. Jackson, S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard, M. Mao, B. Li, G. Cavet, and P. S. Linsley. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 21(6):635-7, Jun 2003. [ bib | DOI | http ]
RNA interference is thought to require near-identity between the small interfering RNA (siRNA) and its cognate mRNA. Here, we used gene expression profiling to characterize the specificity of gene silencing by siRNAs in cultured human cells. Transcript profiles revealed siRNA-specific rather than target-specific signatures, including direct silencing of nontargeted genes containing as few as eleven contiguous nucleotides of identity to the siRNA. These results demonstrate that siRNAs may cross-react with targets of limited sequence similarity.

Keywords: sirna
[Semizarov2003Specificity] D. Semizarov, L. Frost, A. Sarthy, P. Kroeger, D. N. Halbert, and S. W. Fesik. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA, 100(11):6347-52, May 2003. [ bib | DOI | http ]
Short interfering RNA (siRNA) is widely used for studying gene function and holds great promise as a tool for validating drug targets and treating disease. A critical assumption in these applications is that the effect of siRNA on cells is specific, i.e., limited to the specific knockdown of the target gene. In this article, we characterize the specificity of siRNA by applying gene expression profiling. Several siRNAs were designed against different regions of the same target gene for three different targets. Their effects on cells were compared by using DNA microarrays to generate gene expression signatures. When the siRNA design and transfection conditions were optimized, the signatures for different siRNAs against the same target were shown to correlate very closely, whereas the signatures for different genes revealed no correlation. These results indicate that siRNA is a highly specific tool for targeted gene knockdown, establishing siRNA-mediated gene silencing as a reliable approach for large-scale screening of gene function and drug target validation.

Keywords: sirna
[Ui-Tei2004Guidelines] K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-Hamazaki, A. Juni, R. Ueda, and K. Saigo. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res., 32(3):936-948, Feb 2004. [ bib | DOI | http ]
In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5' end of the antisense strand; (ii) G/C at the 5' end of the sense strand; (iii) at least five A/U residues in the 5' terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the first three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.

Keywords: sirna
[Snoeve2004Designing] O. Snøve, M. Nedland, S. H. Fjeldstad, H. Humberset, O. R. Birkeland, T. Grönfeld, and P. Saetrom. Designing effective siRNAs with off-target control. Biochem. Biophys. Res. Commun., 325(3):769-73, Dec 2004. [ bib | DOI | http ]
Successful gene silencing by RNA interference requires a potent and specific depletion of the target mRNA. Target candidates must be chosen so that their corresponding short interfering RNAs are likely to be effective against that target and unlikely to accidentally silence other transcripts due to sequence similarity. We show that both effective and unique targets exist in mouse, fruit fly, and worm, and present a new design tool that enables users to make the trade-off between efficacy and uniqueness. The tool lists all targets with partial sequence similarity to the primary target to highlight candidates for negative controls.

Keywords: sirna
[Scacheri2004Short] P. C. Scacheri, O. Rozenblatt-Rosen, N. J. Caplen, T. G. Wolfsberg, L. Umayam, J. C. Lee, C. M. Hughes, K. S. Shanmugam, A. Bhattacharjee, M. Meyerson, and F. S. Collins. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA, 101(7):1892-7, Feb 2004. [ bib | DOI | http ]
RNA interference (RNAi) mediated by short interfering RNAs (siRNAs) is a widely used method to analyze gene function. To use RNAi knockdown accurately to infer gene function, it is essential to determine the specificity of siRNA-mediated RNAi. We have assessed the specificity of 10 different siRNAs corresponding to the MEN1 gene by examining the expression of two additional genes, TP53 (p53) and CDKN1A (p21), which are considered functionally unrelated to menin but are sensitive markers of cell state. MEN1 RNA and corresponding protein levels were all reduced after siRNA transfection of HeLa cells, although the degree of inhibition mediated by individual siRNAs varied. Unexpectedly, we observed dramatic and significant changes in protein levels of p53 and p21 that were unrelated to silencing of the target gene. The modulations in p53 and p21 levels were not abolished on titration of the siRNAs, and similar results were obtained in three other cell lines; in none of the cell lines tested did we see an effect on the protein levels of actin. These data suggest that siRNAs can induce nonspecific effects on protein levels that are siRNA sequence dependent but that these effects may be difficult to detect until genes central to a pivotal cellular response, such as p53 and p21, are studied. We find no evidence that activation of the double-stranded RNA-triggered IFN-associated antiviral pathways accounts for these effects, but we speculate that partial complementary sequence matches to off-target genes may result in a micro-RNA-like inhibition of translation.

Keywords: sirna
[Saetrom2004comparison] P. Saetrom and O. Snøve. A comparison of siRNA efficacy predictors. Biochem. Biophys. Res. Commun., 321(1):247-53, Aug 2004. [ bib | DOI | http ]
Short interfering RNA (siRNA) efficacy prediction algorithms aim to increase the probability of selecting target sites that are applicable for gene silencing by RNA interference. Many algorithms have been published recently, and they base their predictions on such different features as duplex stability, sequence characteristics, mRNA secondary structure, and target site uniqueness. We compare the performance of the algorithms on a collection of publicly available siRNAs. First, we show that our regularized genetic programming algorithm GPboost appears to have a higher and more stable performance than other algorithms on the collected datasets. Second, several algorithms gave close to random classification on unseen data, and only GPboost and three other algorithms have a reasonably high and stable performance on all parts of the dataset. Third, the results indicate that the siRNAs' sequence is sufficient input to siRNA efficacy algorithms, and that other features that have been suggested to be important may be indirectly captured by the sequence.

Keywords: sirna
[Reynolds2004Rational] A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, and A. Khvorova. Rational siRNA design for RNA interference. Nat. Biotechnol., 22(3):326-330, Mar 2004. [ bib | DOI | http | .pdf ]
Short-interfering RNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi)1, 2, 3, 4. RNAi involves multiple RNA-protein interactions characterized by four major steps: assembly of siRNA with the RNA-induced silencing complex (RISC), activation of the RISC, target recognition and target cleavage. These interactions may bias strand selection during siRNA-RISC assembly and activation, and contribute to the overall efficiency of RNAi5, 6. To identify siRNA-specific features likely to contribute to efficient processing at each step, we performed a systematic analysis of 180 siRNAs targeting the mRNA of two genes. Eight characteristics associated with siRNA functionality were identified: low G/C content, a bias towards low internal stability at the sense strand 3'-terminus, lack of inverted repeats, and sense strand base preferences (positions 3, 10, 13 and 19). Further analyses revealed that application of an algorithm incorporating all eight criteria significantly improves potent siRNA selection. This highlights the utility of rational design for selecting potent siRNAs and facilitating functional gene knockdown studies.

Keywords: sirna
[Meister2004Mechanisms] G. Meister and T. Tuschl. Mechanisms of gene silencing by double-stranded RNA. Nature, 431(7006):343-9, Sep 2004. [ bib | DOI | http | .pdf ]
Double-stranded RNA (dsRNA) is an important regulator of gene expression in many eukaryotes. It triggers different types of gene silencing that are collectively referred to as RNA silencing or RNA interference. A key step in known silencing pathways is the processing of dsRNAs into short RNA duplexes of characteristic size and structure. These short dsRNAs guide RNA silencing by specific and distinct mechanisms. Many components of the RNA silencing machinery still need to be identified and characterized, but a more complete understanding of the process is imminent.

Keywords: sirna
[Jones-Rhoades2004Computational] Matthew W Jones-Rhoades and David P Bartel. Computational identification of plant micrornas and their targets, including a stress-induced mirna. Mol Cell, 14(6):787-799, Jun 2004. [ bib | DOI | http | .pdf ]
MicroRNAs (miRNAs) are approximately 21-nucleotide RNAs, some of which have been shown to play important gene-regulatory roles during plant development. We developed comparative genomic approaches to systematically identify both miRNAs and their targets that are conserved in Arabidopsis thaliana and rice (Oryza sativa). Twenty-three miRNA candidates, representing seven newly identified gene families, were experimentally validated in Arabidopsis, bringing the total number of reported miRNA genes to 92, representing 22 families. Nineteen newly identified target candidates were confirmed by detecting mRNA fragments diagnostic of miRNA-directed cleavage in plants. Overall, plant miRNAs have a strong propensity to target genes controlling development, particularly those of transcription factors and F-box proteins. However, plant miRNAs have conserved regulatory functions extending beyond development, in that they also target superoxide dismutases, laccases, and ATP sulfurylases. The expression of miR395, the sulfurylase-targeting miRNA, increases upon sulfate starvation, showing that miRNAs can be induced by environmental stress.

Keywords: sirna
[John2004Human] Bino John, Anton J Enright, Alexei Aravin, Thomas Tuschl, Chris Sander, and Debora S Marks. Human microrna targets. PLoS Biol, 2(11):e363, Nov 2004. [ bib | DOI | http | .pdf ]
MicroRNAs (miRNAs) interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. The specific function of most mammalian miRNAs is unknown. We have predicted target sites on the 3' untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments. We report about 2,000 human genes with miRNA target sites conserved in mammals and about 250 human genes conserved as targets between mammals and fish. The prediction algorithm optimizes sequence complementarity using position-specific rules and relies on strict requirements of interspecies conservation. Experimental support for the validity of the method comes from known targets and from strong enrichment of predicted targets in mRNAs associated with the fragile X mental retardation protein in mammals. This is consistent with the hypothesis that miRNAs act as sequence-specific adaptors in the interaction of ribonuclear particles with translationally regulated messages. Overrepresented groups of targets include mRNAs coding for transcription factors, components of the miRNA machinery, and other proteins involved in translational regulation, as well as components of the ubiquitin machinery, representing novel feedback loops in gene regulation. Detailed information about target genes, target processes, and open-source software for target prediction (miRanda) is available at http://www.microrna.org. Our analysis suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of all human genes.

Keywords: sirna
[Jackson2004Noise] A. L. Jackson and P. S. Linsley. Noise amidst the silence: off-target effects of siRNAs? Trends Genet., 20(11):521-4, Nov 2004. [ bib | DOI | http ]
RNA interference (RNAi), mediated by short interfering RNAs (siRNAs), is widely used to silence gene expression and to define gene function in mammalian cells. Initially, this gene silencing via transcript degradation was believed to be exquisitely specific, requiring near-identity between the siRNA and the target mRNA. However, several recent reports have suggested that non-specific effects can be induced by siRNAs, both at the level of mRNA and protein. These findings suggest that siRNAs can regulate the expression of unintended targets, and argue for further experiments on the mechanism and extent of off-target gene regulation(s). In the meantime, caution is warranted in interpreting gene function and phenotypes resulting from RNAi experiments.

Keywords: sirna
[Hsieh2004library] A. C. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova, S. Scaringe, and W. R. Sellers. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res., 32(3):893-901, 2004. [ bib | DOI | http | .pdf ]
Gene silencing through RNA interference (RNAi) has been established as a means of conducting reverse genetic studies. In order to better understand the determinants of short interfering RNA (siRNA) knockdown for use in high-throughput cell-based screens, 148 siRNA duplexes targeting 30 genes within the PI3K pathway were selected and synthesized. The extent of RNA knockdown was measured for 22 genes by quantitative real-time PCR. Analysis of the parameters correlating with effective knockdown showed that (i) duplexes targeting the middle of the coding sequence silenced significantly poorer, (ii) silencing by duplexes targeting the 3'UTR was comparable with duplexes targeting the coding sequence, (iii) pooling of four or five duplexes per gene was remarkably efficient in knocking down gene expression and (iv) among duplexes that achieved a >70% knockdown of the mRNA there were strong nucleotide preferences at specific positions, most notably positions 11 (G or C) and 19 (T) of the siRNA duplex. Finally, in a proof-of-principle pathway-wide cell-based genetic screen, conducted to detect negative genetic regulators of Akt S473 phosphorylation, both known negative regulators of this phosphorylation, PTEN and PDK1, were found. These data help to lay the foundation for genome-wide siRNA screens in mammalian cells.

Keywords: sirna
[Hannon2004Unlocking] G. J. Hannon and J. J. Rossi. Unlocking the potential of the human genome with RNA interference. Nature, 431(7006):371-8, Sep 2004. [ bib | DOI | http | .pdf ]
The discovery of RNA interference (RNAi) may well be one of the transforming events in biology in the past decade. RNAi can result in gene silencing or even in the expulsion of sequences from the genome. Harnessed as an experimental tool, RNAi has revolutionized approaches to decoding gene function. It also has the potential to be exploited therapeutically, and clinical trials to test this possibility are already being planned.

Keywords: sirna
[Hall2004Unravelling] J. Hall. Unravelling the general properties of siRNAs: strength in numbers and lessons from the past. Nat. Rev. Genet., 5(7):552-7, Jul 2004. [ bib | DOI | http | .pdf ]
Keywords: sirna
[Haley2004Kinetic] B. Haley and P. D. Zamore. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol., 11(7):599-606, Jul 2004. [ bib | DOI | http | .pdf ]
The siRNA-directed ribonucleoprotein complex, RISC, catalyzes target RNA cleavage in the RNA interference pathway. Here, we show that siRNA-programmed RISC is a classical Michaelis-Menten enzyme in the presence of ATP. In the absence of ATP, the rate of multiple rounds of catalysis is limited by release of the cleaved products from the enzyme. Kinetic analysis suggests that different regions of the siRNA play distinct roles in the cycle of target recognition, cleavage, and product release. Bases near the siRNA 5' end disproportionately contribute to target RNA-binding energy, whereas base pairs formed by the central and 3' regions of the siRNA provide a helical geometry required for catalysis. Finally, the position of the scissile phosphate on the target RNA seems to be determined during RISC assembly, before the siRNA encounters its RNA target.

Keywords: sirna
[Gong2004Picking] D. Gong and J. E. Ferrell. Picking a winner: new mechanistic insights into the design of effective siRNAs. Trends Biotechnol., 22(9):451-4, Sep 2004. [ bib | DOI | http ]
Recent work has shown that the efficacy of a small interfering RNA (siRNA) for silencing gene expression is a function of how easy it is to unwind the siRNA from the 5'-antisense end. Based on these insights, one group has designed an algorithm that substantially improves the odds of picking an effective siRNA, and two groups have shown that 'forked' or 'frayed' siRNAs, which should be easier to unwind from the 5'-antisense end, are more effective than conventional siRNAs. These strategies represent important steps towards the rational design of effective siRNAs.

Keywords: sirna
[Ding2004Sfold] Y. Ding, C. Chan Yu, and C. E. Lawrence. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res., 32(Web Server issue):W135-W141, Jul 2004. [ bib | DOI | http ]
The Sfold web server provides user-friendly access to Sfold, a recently developed nucleic acid folding software package, via the World Wide Web (WWW). The software is based on a new statistical sampling paradigm for the prediction of RNA secondary structure. One of the main objectives of this software is to offer computational tools for the rational design of RNA-targeting nucleic acids, which include small interfering RNAs (siRNAs), antisense oligonucleotides and trans-cleaving ribozymes for gene knock-down studies. The methodology for siRNA design is based on a combination of RNA target accessibility prediction, siRNA duplex thermodynamic properties and empirical design rules. Our approach to target accessibility evaluation is an original extension of the underlying RNA folding algorithm to account for the likely existence of a population of structures for the target mRNA. In addition to the application modules Sirna, Soligo and Sribo for siRNAs, antisense oligos and ribozymes, respectively, the module Srna offers comprehensive features for statistical representation of sampled structures. Detailed output in both graphical and text formats is available for all modules. The Sfold server is available at http://sfold.wadsworth.org and http://www.bioinfo.rpi.edu/applications/sfold.

Keywords: sirna
[Chalk2004Improved] A. M. Chalk, C. Wahlestedt, and E. L. L. Sonnhammer. Improved and automated prediction of effective siRNA. Biochem. Biophys. Res. Commun., 319(1):264-74, Jun 2004. [ bib | DOI | http | .pdf ]
Short interfering RNAs are used in functional genomics studies to knockdown a single gene in a reversible manner. The results of siRNA experiments are highly dependent on the choice of siRNA sequence. In order to evaluate siRNA design rules, we collected a database of 398 siRNAs of known efficacy from 92 genes. We used this database to evaluate previously proposed rules from smaller datasets, and to find a new set of rules that are optimal for the entire database. We also trained a regression tree with full cross-validation. It was however difficult to obtain the same precision as methods previously tested on small datasets from one or two genes. We show that those methods are overfitting as they work poorly on independent validation datasets from multiple genes. Our new design rules can predict siRNAs with efficacy >/= 50% in 91% of cases, and with efficacy >/=90% in 52% of cases, which is more than a twofold improvement over random selection. Software for designing siRNAs is available online via a web server at or as a standalone version for high-throughput applications.

Keywords: sirna
[Bartel2004MicroRNAs] David P Bartel. Micrornas: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297, Jan 2004. [ bib | .pdf ]
MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

Keywords: sirna
[Amarzguioui2004algorithm] M. Amarzguioui and H. Prydz. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun., 316(4):1050-8, Apr 2004. [ bib | DOI | http ]
Randomly designed siRNA targeting different positions within the same mRNA display widely differing activities. We have performed a statistical analysis of 46 siRNA, identifying various features of the 19bp duplex that correlate significantly with functionality at the 70% knockdown level and verified these results against an independent data set of 34 siRNA recently reported by others. Features that consistently correlated positively with functionality across the two data sets included an asymmetry in the stability of the duplex ends (measured as the A/U differential of the three terminal basepairs at either end of the duplex) and the motifs S1, A6, and W19. The presence of the motifs U1 or G19 was associated with lack of functionality. A selection algorithm based on these findings strongly differentiated between the two functional groups of siRNA in both data sets and proved highly effective when used to design siRNA targeting new endogenous human genes.

Keywords: sirna
[Mittal2004Improving] V. Mittal. Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet., 5(5):355-65, May 2004. [ bib | DOI | http ]
Keywords: sirna
[Ma2004Structural] J.B. Ma, K. Ye, and D.J. Patel. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 429(6989):318-322, May 2004. [ bib | DOI | http ]
Short RNAs mediate gene silencing, a process associated with virus resistance, developmental control and heterochromatin formation in eukaryotes. RNA silencing is initiated through Dicer-mediated processing of double-stranded RNA into small interfering RNA (siRNA). The siRNA guide strand associates with the Argonaute protein in silencing effector complexes, recognizes complementary sequences and targets them for silencing. The PAZ domain is an RNA-binding module found in Argonaute and some Dicer proteins and its structure has been determined in the free state. Here, we report the 2.6 A crystal structure of the PAZ domain from human Argonaute eIF2c1 bound to both ends of a 9-mer siRNA-like duplex. In a sequence-independent manner, PAZ anchors the 2-nucleotide 3' overhang of the siRNA-like duplex within a highly conserved binding pocket, and secures the duplex by binding the 7-nucleotide phosphodiester backbone of the overhang-containing strand and capping the 5'-terminal residue of the complementary strand. On the basis of the structure and on binding assays, we propose that PAZ might serve as an siRNA-end-binding module for siRNA transfer in the RNA silencing pathway, and as an anchoring site for the 3' end of guide RNA within silencing effector complexes.

Keywords: sirna
[Yamada2005Accelerated] T. Yamada and S. Morishita. Accelerated off-target search algorithm for siRNA. Bioinformatics, 21(8):1316-24, Apr 2005. [ bib | DOI | http ]
MOTIVATION: Designing highly effective short interfering RNA (siRNA) sequences with maximum target-specificity for mammalian RNA interference (RNAi) is one of the hottest topics in molecular biology. The relationship between siRNA sequences and RNAi activity has been studied extensively to establish rules for selecting highly effective sequences. However, there is a pressing need to compute siRNA sequences that minimize off-target silencing effects efficiently and to match any non-targeted sequences with mismatches. RESULTS: The enumeration of potential cross-hybridization candidates is non-trivial, because siRNA sequences are short, ca. 19 nt in length, and at least three mismatches with non-targets are required. With at least three mismatches, there are typically four or five contiguous matches, so that a BLAST search frequently overlooks off-target candidates. By contrast, existing accurate approaches are expensive to execute; thus we need to develop an accurate, efficient algorithm that uses seed hashing, the pigeonhole principle, and combinatorics to identify mismatch patterns. Tests show that our method can list potential cross-hybridization candidates for any siRNA sequence of selected human gene rapidly, outperforming traditional methods by orders of magnitude in terms of computational performance. AVAILABILITY: http://design.RNAi.jp CONTACT: yamada@cb.k.u-tokyo.ac.jp.

Keywords: sirna
[Truss2005HuSiDa] M. Truss, M. Swat, S. M. Kielbasa, R. Schäfer, H. Herzel, and C. Hagemeier. HuSiDa-the human siRNA database: an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells. Nucleic Acids Res., 33(Database issue):D108-11, Jan 2005. [ bib | DOI | http ]
Small interfering RNAs (siRNAs) have become a standard tool in functional genomics. Once incorporated into the RNA-induced silencing complex (RISC), siRNAs mediate the specific recognition of corresponding target mRNAs and their cleavage. However, only a small fraction of randomly chosen siRNA sequences is able to induce efficient gene silencing. In common laboratory practice, successful RNA interference experiments typically require both, the labour and cost-intensive identification of an active siRNA sequence and the optimization of target cell line-specific procedures for optimal siRNA delivery. To optimize the design and performance of siRNA experiments, we have established the human siRNA database (HuSiDa). The database provides sequences of published functional siRNA molecules targeting human genes and important technical details of the corresponding gene silencing experiments, including the mode of siRNA generation, recipient cell lines, transfection reagents and procedures and direct links to published references (PubMed). The database can be accessed at http://www.human-siRNA-database.net. We used the siRNA sequence information stored in the database for scrutinizing published sequence selection parameters for efficient gene silencing.

Keywords: sirna
[Tomari2005Perspective] Y. Tomari and P. D. Zamore. Perspective: machines for RNAi. Genes Dev., 19(5):517-29, Mar 2005. [ bib | DOI | http ]
RNA silencing pathways convert the sequence information in long RNA, typically double-stranded RNA, into approximately 21-nt RNA signaling molecules such as small interfering RNAs (siRNAs) and microRNAs (miRNAs). siRNAs and miRNAs provide specificity to protein effector complexes that repress mRNA transcription or translation, or catalyze mRNA destruction. Here, we review our current understanding of how small RNAs are produced, how they are loaded into protein complexes, and how they repress gene expression.

Keywords: sirna
[Tang2005siRNA] G. Tang. siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci., 30(2):106-14, Feb 2005. [ bib | DOI | http ]
Two classes of short RNA molecule, small interfering RNA (siRNA) and microRNA (miRNA), have been identified as sequence-specific posttranscriptional regulators of gene expression. siRNA and miRNA are incorporated into related RNA-induced silencing complexes (RISCs), termed siRISC and miRISC, respectively. The current model argues that siRISC and miRISC are functionally interchangeable and target specific mRNAs for cleavage or translational repression, depending on the extent of sequence complementarity between the small RNA and its target. Emerging evidence indicates, however, that siRISC and miRISC are distinct complexes that regulate mRNA stability and translation. The assembly of RISCs can be traced from the biogenesis of the small RNA molecules and the recruitment of these RNAs by the RISC loading complex (RLC) to the transition of the RLC into the active RISC. Target recognition by the RISC can then take place through different interacting modes.

Keywords: sirna
[Qiu2005computational] S. Qiu, C. M. Adema, and T. Lane. A computational study of off-target effects of RNA interference. Nucleic Acids Res., 33(6):1834-1847, 2005. [ bib | DOI | http ]
RNA interference (RNAi) is an intracellular mechanism for post-transcriptional gene silencing that is frequently used to study gene function. RNAi is initiated by short interfering RNA (siRNA) of approximately 21 nt in length, either generated from the double-stranded RNA (dsRNA) by using the enzyme Dicer or introduced experimentally. Following association with an RNAi silencing complex, siRNA targets mRNA transcripts that have sequence identity for destruction. A phenotype resulting from this knockdown of expression may inform about the function of the targeted gene. However, 'off-target effects' compromise the specificity of RNAi if sequence identity between siRNA and random mRNA transcripts causes RNAi to knockdown expression of non-targeted genes. The complete off-target effects must be investigated systematically on each gene in a genome by adjusting a group of parameters, which is too expensive to conduct experimentally and motivates a study in silico. This computational study examined the potential for off-target effects of RNAi, employing the genome and transcriptome sequence data of Homo sapiens, Caenorhabditis elegans and Schizosaccharomyces pombe. The chance for RNAi off-target effects proved considerable, ranging from 5 to 80% for each of the organisms, when using as parameter the exact identity between any possible siRNA sequences (arbitrary length ranging from 17 to 28 nt) derived from a dsRNA (range 100-400 nt) representing the coding sequences of target genes and all other siRNAs within the genome. Remarkably, high-sequence specificity and low probability for off-target reactivity were optimally balanced for siRNA of 21 nt, the length observed mostly in vivo. The chance for off-target RNAi increased (although not always significantly) with greater length of the initial dsRNA sequence, inclusion into the analysis of available untranslated region sequences and allowing for mismatches between siRNA and target sequences. siRNA sequences from within 100 nt of the 5' termini of coding sequences had low chances for off-target reactivity. This may be owing to coding constraints for signal peptide-encoding regions of genes relative to regions that encode for mature proteins. Off-target distribution varied along the chromosomes of C.elegans, apparently owing to the use of more unique sequences in gene-dense regions. Finally, biological and thermodynamical descriptors of effective siRNA reduced the number of potential siRNAs compared with those identified by sequence identity alone, but off-target RNAi remained likely, with an off-target error rate of approximately 10%. These results also suggest a direction for future in vivo studies that could both help in calibrating true off-target rates in living organisms and also in contributing evidence toward the debate of whether siRNA efficacy is correlated with, or independent of, the target molecule. In summary, off-target effects present a real but not prohibitive concern that should be considered for RNAi experiments.

Keywords: sirna
[Ma2005Structural] J-B. Ma, Y.-R. Yuan, G.. Meister, Y. Pei, T. Tuschl, and Patel D.J. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus PIWI protein. Nature, 434:666-670, 2005. [ bib ]
Keywords: sirna
[Lim2005Microarray] Lee P Lim, Nelson C Lau, Philip Garrett-Engele, Andrew Grimson, Janell M Schelter, John Castle, David P Bartel, Peter S Linsley, and Jason M Johnson. Microarray analysis shows that some micrornas downregulate large numbers of target mrnas. Nature, 433(7027):769-773, Feb 2005. [ bib | DOI | http ]
MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.

Keywords: sirna
[Lewis2005Conserved] Benjamin P Lewis, Christopher B Burge, and David P Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell, 120(1):15-20, Jan 2005. [ bib | DOI | http | .pdf ]
We predict regulatory targets of vertebrate microRNAs (miRNAs) by identifying mRNAs with conserved complementarity to the seed (nucleotides 2-7) of the miRNA. An overrepresentation of conserved adenosines flanking the seed complementary sites in mRNAs indicates that primary sequence determinants can supplement base pairing to specify miRNA target recognition. In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of our gene set. Targeting was also detected in open reading frames. In sum, well over one third of human genes appear to be conserved miRNA targets.

Keywords: sirna
[Huppi2005Defining] K. Huppi, S. E. Martin, and N. J. Caplen. Defining and assaying RNAi in mammalian cells. Mol. Cell, 17(1):1-10, Jan 2005. [ bib | DOI | http ]
The investigation of protein function through the inhibition of activity has been critical to our understanding of many normal and abnormal biological processes. Until recently, functional inhibition in biological systems has been induced using a variety of approaches including small molecule antagonists, antibodies, aptamers, ribozymes, antisense oligonucleotides or transcripts, morpholinos, dominant-negative mutants, and knockout transgenic animals. Although all of these approaches have made substantial advances in our understanding of the function of many proteins, a lack of specificity or restricted applicability has limited their utility. Recently, exploitation of the naturally occurring posttranscriptional gene silencing mechanism triggered by double-stranded RNA (dsRNA), termed RNA interference (RNAi), has gained much favor as an alternative means for analyzing gene function. Aspects of the basic biology of RNAi, its application as a functional genomics tool, and its potential as a therapeutic approach have been extensively reviewed (Hannon and Rossi, 2004; Meister and Tuschl, 2004); however, there has been only limited discussion as to how to design and validate an individual RNAi effector molecule and how to interpret RNAi data overall, particularly with reference to experimentation in mammalian cells. This perspective will aim to consider some of the issues encountered when conducting and interpreting RNAi experiments in mammalian cells.

Keywords: sirna
[Huesken2005Design] D. Huesken, J. Lange, C. Mickanin, J. Weiler, F. Asselbergs, J. Warner, B. Meloon, S. Engel, A. Rosenberg, D. Cohen, M. Labow, M. Reinhardt, F. Natt, and J. Hall. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol., 23(8):995-1001, Aug 2005. [ bib | DOI | http | .pdf ]
The largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene1, 2, 3. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.66) and siRNAs targeting endogenous genes at mRNA and protein levels. Neural networks trained on a complementary 21-nucleotide (nt) guide sequence were superior to those trained on a 19-nt sequence. BIOPREDsi was used in the design of a genome-wide siRNA collection with two potent siRNAs per gene. When this collection of 50,000 siRNAs was used to identify genes involved in the cellular response to hypoxia, two of the most potent hits were the key hypoxia transcription factors HIF1A and ARNT.

Keywords: sirna
[Chalk2005siRNAdb] A. M. Chalk, R. E. Warfinge, P. Georgii-Hemming, and E. L. L. Sonnhammer. siRNAdb: a database of siRNA sequences. Nucleic Acids Res., 33(Database issue):D131-D134, Jan 2005. [ bib | DOI | http | .pdf ]
Short interfering RNAs (siRNAs) are a popular method for gene-knockdown, acting by degrading the target mRNA. Before performing experiments it is invaluable to locate and evaluate previous knockdown experiments for the gene of interest. The siRNA database provides a gene-centric view of siRNA experimental data, including siRNAs of known efficacy and siRNAs predicted to be of high efficacy by a combination of methods. Linked to these sequences is information such as siRNA thermodynamic properties and the potential for sequence-specific off-target effects. The database enables the user to evaluate an siRNA's potential for inhibition and non-specific effects. The database is available at http://siRNA.cgb.ki.se.

Keywords: sirna
[Brennecke2005Principles] Julius Brennecke, Alexander Stark, Robert B Russell, and Stephen M Cohen. Principles of microrna-target recognition. PLoS Biol, 3(3):e85, Mar 2005. [ bib | DOI | http ]
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression in plants and animals. Although their biological importance has become clear, how they recognize and regulate target genes remains less well understood. Here, we systematically evaluate the minimal requirements for functional miRNA-target duplexes in vivo and distinguish classes of target sites with different functional properties. Target sites can be grouped into two broad categories. 5' dominant sites have sufficient complementarity to the miRNA 5' end to function with little or no support from pairing to the miRNA 3' end. Indeed, sites with 3' pairing below the random noise level are functional given a strong 5' end. In contrast, 3' compensatory sites have insufficient 5' pairing and require strong 3' pairing for function. We present examples and genome-wide statistical support to show that both classes of sites are used in biologically relevant genes. We provide evidence that an average miRNA has approximately 100 target sites, indicating that miRNAs regulate a large fraction of protein-coding genes and that miRNA 3' ends are key determinants of target specificity within miRNA families.

Keywords: sirna
[Boese2005Mechanistic] Q. Boese, D. Leake, A. Reynolds, S. Read, S. A. Scaringe, W. S. Marshall, and A. Khvorova. Mechanistic insights aid computational short interfering RNA design. Methods Enzymol., 392:73-96, 2005. [ bib | DOI | http ]
RNA interference is widely recognized for its utility as a functional genomics tool. In the absence of reliable target site selection tools, however, the impact of RNA interference (RNAi) may be diminished. The primary determinants of silencing are influenced by highly coordinated RNA-protein interactions that occur throughout the RNAi process, including short interfering RNA (siRNA) binding and unwinding followed by target recognition, cleavage, and subsequent product release. Recently developed strategies for identification of functional siRNAs reveal that thermodynamic and siRNA sequence-specific properties are crucial to predict functional duplexes (Khvorova et al., 2003; Reynolds et al., 2004; Schwarz et al., 2003). Additional assessments of siRNA specificity reveal that more sophisticated sequence comparison tools are also required to minimize potential off-target effects (Jackson et al., 2003; Semizarov et al., 2003). This chapter reviews the biological basis for current computational design tools and how best to utilize and assess their predictive capabilities for selecting functional and specific siRNAs.

Keywords: sirna
[Teramoto2005Prediction] Reiji Teramoto, Mikio Aoki, Toru Kimura, and Masaharu Kanaoka. Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Lett., 579(13):2878-82, May 2005. [ bib | DOI | http | .pdf ]
Small interfering RNAs (siRNAs) are becoming widely used for sequence-specific gene silencing in mammalian cells, but designing an effective siRNA is still a challenging task. In this study, we developed an algorithm for predicting siRNA functionality by using generalized string kernel (GSK) combined with support vector machine (SVM). With GSK, siRNA sequences were represented as vectors in a multi-dimensional feature space according to the numbers of subsequences in each siRNA, and subsequently classified with SVM into effective or ineffective siRNAs. We applied this algorithm to published siRNAs, and could classify effective and ineffective siRNAs with 90.6%, 86.2% accuracy, respectively.

Keywords: sirna biosvm
[Schubert2005Local] S. Schubert, A. Grünweller, V. A. Erdmann, and J. Kurreck. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol., 348(4):883-893, May 2005. [ bib | DOI | http ]
Contradictory reports in the literature have emphasised either the sequence of small interfering RNAs (siRNA) or the structure of their target molecules to be the major determinant of the efficiency of RNA interference (RNAi) approaches. In the present study, we analyse systematically the contributions of these parameters to siRNA activity by using deliberately designed mRNA constructs. The siRNA target sites were included in well-defined structural elements rendering them either highly accessible or completely involved in stable base-pairing. Furthermore, complementary sequence elements and various hairpins with different stem lengths and designs were used as target sites. Only one of the strands of the siRNA duplex was found to be capable of silencing via its respective target site, indicating that thermodynamic characteristics intrinsic to the siRNA strands are a basic determinant of siRNA activity. A significant obstruction of gene silencing by the same siRNA, however, was observed to be caused by structural features of the substrate RNA. Bioinformatic analysis of the mRNA structures suggests a direct correlation between the extent of gene-knockdown and the local free energy in the target region. Our findings indicate that, although a favourable siRNA sequence is a necessary prerequisite for efficient RNAi, complex target structures may limit the applicability even of carefully chosen siRNAs.

Keywords: sirna
[Overhoff2005Local] M. Overhoff, M. Alken, R. K. Far, M. Lemaitre, B. Lebleu, G. Sczakiel, and I. Robbins. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J. Mol. Biol., 348(4):871-881, May 2005. [ bib | DOI | http ]
The efficiency with which small interfering RNAs (siRNAs) down-regulate specific gene expression in living cells is variable and a number of sequence-governed, biochemical parameters of the siRNA duplex have been proposed for the design of an efficient siRNA. Some of these parameters have been clearly identified to influence the assembly of the RNA-induced silencing complex (RISC), or to favour the sequence preferences of the RISC endonuclease. For other parameters, it is difficult to ascertain whether the influence is a determinant of the siRNA per se, or a determinant of the target RNA, especially its local structural characteristics. In order to gain an insight into the effects of local target structure on the biological activity of siRNA, we have used large sets of siRNAs directed against local targets of the mRNAs of ICAM-1 and survivin. Target structures were classified as accessible or inaccessible using an original, iterative computational approach and by experimental RNase H mapping. The effectiveness of siRNA was characterized by measuring the IC50 values in cell culture and the maximal extent of target suppression. Mean IC50 values were tenfold lower for accessible local target sites, with respect to inaccessible ones. Mean maximal target suppression was improved. These data illustrate that local target structure does, indeed, influence the activity of siRNA. We suggest that local target screening can significantly improve the hit rate in the design of biologically active siRNAs.

Keywords: sirna
[Shabalina2006Computational] S. Shabalina, A. Spiridonov, and A. Ogurtsov. Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics, 7(1):65, Feb 2006. [ bib | DOI | http | .pdf ]
ABSTRACT: BACKGROUND: Small interfering RNAs (siRNAs) have become an important tool in cell and molecular biology. Reliable design of siRNA molecules is essential for the needs of large functional genomics projects. RESULTS: To improve the design of efficient siRNA molecules, we performed a comparative, thermodynamic and correlation analysis on a heterogeneous set of 653 siRNAs collected from the literature. We used this training set to select siRNA features and optimize computational models. We identified 18 parameters that correlate significantly with silencing efficiency. Some of these parameters characterize only the siRNA sequence, while others involve the whole mRNA. Most importantly, we derived an siRNA position-dependent consensus, and optimized the free-energy difference of the 5' and 3' terminal dinucleotides of the siRNA antisense strand. The position-dependent consensus is based on correlation and t-test analyses of the training set, and accounts for both significantly preferred and avoided nucleotides in all sequence positions. On the training set, the two parameters' correlation with silencing efficiency was 0.5 and 0.36, respectively. Among other features, a dinucleotide content index and the frequency of potential targets for siRNA in the mRNA added predictive power to our model (R = 0.55). We showed that our model is effective for predicting the efficiency of siRNAs at different concentrations. We optimized a neural network model on our training set using three parameters characterizing the siRNA sequence, and predicted efficiencies for the test siRNA dataset recently published by Novartis. On this validation set, the correlation coefficient between predicted and observed efficiency was 0.75. Using the same model, we performed a transcriptome-wide analysis of optimal siRNA targets for 22,600 human mRNAs. CONCLUSIONS: We demonstrated that the properties of the siRNAs themselves are essential for efficient RNA interference. The 5' ends of antisense strands of efficient siRNAs are U-rich and possess a content similarity to the pyrimidine-rich oligonucleotides interacting with the polypurine RNA tracks that are recognized by RNase H. The advantage of our method over similar methods is the small number of parameters. As a result, our method requires a much smaller training set to produce consistent results. Other mRNA features, though expensive to compute, can slightly improve our model.

Keywords: sirna
[Ren2006siRecords] Y. Ren, W. Gong, Q. Xu, X. Zheng, D. Lin, Y. Wang, and T. Li. siRecords: an extensive database of mammalian siRNAs with efficacy ratings. Bioinformatics, Jan 2006. [ bib | DOI | http ]
SUMMARY: Short interfering RNAs have been gaining popularity as the gene knock-down tool of choice by many researchers due to the clean nature of their workings as well as the technical simplicity and cost efficiency in their applications. We have constructed siRecords, a database of siRNAs experimentally tested by researchers with consistent efficacy ratings. This database will help siRNA researchers develop more reliable siRNA design rules; in the mean time, benefit experimental researchers directly by providing them with information about the siRNAs that have been experimentally tested against the genes of their interest. Currently, more than 4, 100 carefully annotated siRNA sequences obtained from more than 1, 200 published siRNA studies are hosted in siRecords. This database will continue to expand as more experimentally tested siRNAs are published. AVAILABILITY: The siRecords database can be accessed at http://siRecords.umn.edu/siRecords/.

Keywords: sirna
[Pai2006Prospects] S. I. Pai, Y.-Y. Lin, B. Macaes, A. Meneshian, HungC.-F., and T.-C. Wu. Prospects of RNA interference therapy for cancer. Gene Ther., 13(6):464-477, Mar 2006. [ bib | DOI | http ]
RNA interference (RNAi) is a powerful gene-silencing process that holds great promise in the field of cancer therapy. The discovery of RNAi has generated enthusiasm within the scientific community, not only because it has been used to rapidly identify key molecules involved in many disease processes including cancer, but also because RNAi has the potential to be translated into a technology with major therapeutic applications. Our evolving understanding of the molecular pathways important for carcinogenesis has created opportunities for cancer therapy employing RNAi technology to target the key molecules within these pathways. Many gene products involved in carcinogenesis have already been explored as targets for RNAi intervention, and RNAi targeting of molecules crucial for tumor-host interactions and tumor resistance to chemo- or radiotherapy has also been investigated. In most of these studies, the silencing of critical gene products by RNAi technology has generated significant antiproliferative and/or proapoptotic effects in cell-culture systems or in preclinical animal models. Nevertheless, significant obstacles, such as in vivo delivery, incomplete suppression of target genes, nonspecific immune responses and the so-called off-target effects, need to be overcome before this technology can be successfully translated into the clinical arena. Significant progress has already been made in addressing some of these issues, and it is foreseen that early phase clinical trials will be initiated in the very near future.

Keywords: sirna
[Miranda2006pattern-based] Kevin C Miranda, Tien Huynh, Yvonne Tay, Yen-Sin Ang, Wai-Leong Tam, Andrew M Thomson, Bing Lim, and Isidore Rigoutsos. A pattern-based method for the identification of microrna binding sites and their corresponding heteroduplexes. Cell, 126(6):1203-1217, Sep 2006. [ bib | DOI | http | .pdf ]
We present rna22, a method for identifying microRNA binding sites and their corresponding heteroduplexes. Rna22 does not rely upon cross-species conservation, is resilient to noise, and, unlike previous methods, it first finds putative microRNA binding sites in the sequence of interest, then identifies the targeting microRNA. Computationally, we show that rna22 identifies most of the currently known heteroduplexes. Experimentally, with luciferase assays, we demonstrate average repressions of 30% or more for 168 of 226 tested targets. The analysis suggests that some microRNAs may have as many as a few thousand targets, and that between 74% and 92% of the gene transcripts in four model genomes are likely under microRNA control through their untranslated and amino acid coding regions. We also extended the method's key idea to a low-error microRNA-precursor-discovery scheme; our studies suggest that the number of microRNA precursors in mammalian genomes likely ranges in the tens of thousands.

Keywords: sirna
[Jia2006Demonstration] P. Jia, T. Shi, Y. Cai, and Y. Li. Demonstration of two novel methods for predicting functional siRNA efficiency. BMC Bioinformatics, 7:271, 2006. [ bib | DOI | http | .pdf ]
BACKGROUND: siRNAs are small RNAs that serve as sequence determinants during the gene silencing process called RNA interference (RNAi). It is well know that siRNA efficiency is crucial in the RNAi pathway, and the siRNA efficiency for targeting different sites of a specific gene varies greatly. Therefore, there is high demand for reliable siRNAs prediction tools and for the design methods able to pick up high silencing potential siRNAs. RESULTS: In this paper, two systems have been established for the prediction of functional siRNAs: (1) a statistical model based on sequence information and (2) a machine learning model based on three features of siRNA sequences, namely binary description, thermodynamic profile and nucleotide composition. Both of the two methods show high performance on the two datasets we have constructed for training the model. CONCLUSION: Both of the two methods studied in this paper emphasize the importance of sequence information for the prediction of functional siRNAs. The way of denoting a bio-sequence by binary system in mathematical language might be helpful in other analysis work associated with fixed-length bio-sequence.

Keywords: sirna
[Didiano2006Perfect] Dominic Didiano and Oliver Hobert. Perfect seed pairing is not a generally reliable predictor for mirna-target interactions. Nat Struct Mol Biol, 13(9):849-851, Sep 2006. [ bib | DOI | http | .pdf ]
We use Caenorhabditis elegans to test proposed general rules for microRNA (miRNA)-target interactions. We show that G.U base pairing is tolerated in the 'seed' region of the lsy-6 miRNA interaction with its in vivo target cog-1, and that 6- to 8-base-pair perfect seed pairing is not a generally reliable predictor for an interaction of lsy-6 with a 3' untranslated region (UTR). Rather, lsy-6 can functionally interact with its target site only in specific 3' UTR contexts. Our findings illustrate the difficulty of establishing generalizable rules of miRNA-target interactions.

Keywords: sirna
[Vasudevan2007Switching] Shobha Vasudevan, Yingchun Tong, and Joan A Steitz. Switching from repression to activation: micrornas can up-regulate translation. Science, 318(5858):1931-1934, Dec 2007. [ bib | DOI | http ]
AU-rich elements (AREs) and microRNA target sites are conserved sequences in messenger RNA (mRNA) 3' untranslated regions (3'UTRs) that control gene expression posttranscriptionally. Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) mRNA is transformed into a translation activation signal, recruiting Argonaute (AGO) and fragile X mental retardation-related protein 1 (FXR1), factors associated with micro-ribonucleoproteins (microRNPs). We show that human microRNA miR369-3 directs association of these proteins with the AREs to activate translation. Furthermore, we document that two well-studied microRNAs-Let-7 and the synthetic microRNA miRcxcr4-likewise induce translation up-regulation of target mRNAs on cell cycle arrest, yet they repress translation in proliferating cells. Thus, activation is a common function of microRNPs on cell cycle arrest. We propose that translation regulation by microRNPs oscillates between repression and activation during the cell cycle.

Keywords: sirna
[Lytle2007Target] J. Robin Lytle, Therese A Yario, and Joan A Steitz. Target mrnas are repressed as efficiently by microrna-binding sites in the 5' utr as in the 3' utr. Proc Natl Acad Sci U S A, 104(23):9667-9672, Jun 2007. [ bib | DOI | http ]
In animals, microRNAs (miRNAs) bind to the 3' UTRs of their target mRNAs and interfere with translation, although the exact mechanism of inhibition of protein synthesis remains unclear. Functional miRNA-binding sites in the coding regions or 5' UTRs of endogenous mRNAs have not been identified. We studied the effect of introducing miRNA target sites into the 5' UTR of luciferase reporter mRNAs containing internal ribosome entry sites (IRESs), so that potential steric hindrance by a microribonucleoprotein complex would not interfere with the initiation of translation. In human HeLa cells, which express endogenous let-7a miRNA, the translational efficiency of these IRES-containing reporters with 5' let-7 complementary sites from the Caenorhabditis elegans lin-41 3' UTR was repressed. Similarly, the IRES-containing reporters were translationally repressed when human Ago2 was tethered to either the 5' or 3' UTR. Interestingly, the method of DNA transfection affected our ability to observe miRNA-mediated repression. Our results suggest that association with any position on a target mRNA is mechanistically sufficient for a microribonucleoprotein to exert repression of translation at some step downstream of initiation.

Keywords: sirna
[Kertesz2007role] Michael Kertesz, Nicola Iovino, Ulrich Unnerstall, Ulrike Gaul, and Eran Segal. The role of site accessibility in microrna target recognition. Nat Genet, 39(10):1278-1284, Oct 2007. [ bib | DOI | http | .pdf ]
MicroRNAs are key regulators of gene expression, but the precise mechanisms underlying their interaction with their mRNA targets are still poorly understood. Here, we systematically investigate the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. We experimentally show that mutations diminishing target accessibility substantially reduce microRNA-mediated translational repression, with effects comparable to those of mutations that disrupt sequence complementarity. We devise a parameter-free model for microRNA-target interaction that computes the difference between the free energy gained from the formation of the microRNA-target duplex and the energetic cost of unpairing the target to make it accessible to the microRNA. This model explains the variability in our experiments, predicts validated targets more accurately than existing algorithms, and shows that genomes accommodate site accessibility by preferentially positioning targets in highly accessible regions. Our study thus demonstrates that target accessibility is a critical factor in microRNA function.

Keywords: sirna
[Grimson2007MicroRNA] Andrew Grimson, Kyle Kai-How Farh, Wendy K Johnston, Philip Garrett-Engele, Lee P Lim, and David P Bartel. Microrna targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27(1):91-105, Jul 2007. [ bib | DOI | http | .pdf ]
Mammalian microRNAs (miRNAs) pair to 3'UTRs of mRNAs to direct their posttranscriptional repression. Important for target recognition are approximately 7 nt sites that match the seed region of the miRNA. However, these seed matches are not always sufficient for repression, indicating that other characteristics help specify targeting. By combining computational and experimental approaches, we uncovered five general features of site context that boost site efficacy: AU-rich nucleotide composition near the site, proximity to sites for coexpressed miRNAs (which leads to cooperative action), proximity to residues pairing to miRNA nucleotides 13-16, positioning within the 3'UTR at least 15 nt from the stop codon, and positioning away from the center of long UTRs. A model combining these context determinants quantitatively predicts site performance both for exogenously added miRNAs and for endogenous miRNA-message interactions. Because it predicts site efficacy without recourse to evolutionary conservation, the model also identifies effective nonconserved sites and siRNA off-targets.

Keywords: sirna
[Ameres2007Molecular] Stefan Ludwig Ameres, Javier Martinez, and Renée Schroeder. Molecular basis for target rna recognition and cleavage by human risc. Cell, 130(1):101-112, Jul 2007. [ bib | DOI | http | .pdf ]
The RNA-Induced Silencing Complex (RISC) is a ribonucleoprotein particle composed of a single-stranded short interfering RNA (siRNA) and an endonucleolytically active Argonaute protein, capable of cleaving mRNAs complementary to the siRNA. The mechanism by which RISC cleaves a target RNA is well understood, however it remains enigmatic how RISC finds its target RNA. Here, we show, both in vitro and in vivo, that the accessibility of the target site correlates directly with the efficiency of cleavage, demonstrating that RISC is unable to unfold structured RNA. In the course of target recognition, RISC transiently contacts single-stranded RNA nonspecifically and promotes siRNA-target RNA annealing. Furthermore, the 5' part of the siRNA within RISC creates a thermodynamic threshold that determines the stable association of RISC and the target RNA. We therefore provide mechanistic insights by revealing features of RISC and target RNAs that are crucial to achieve efficiency and specificity in RNA interference.

Keywords: sirna
[Morin2008Application] Ryan D Morin, Michael D O'Connor, Malachi Griffith, Florian Kuchenbauer, Allen Delaney, Anna-Liisa Prabhu, Yongjun Zhao, Helen McDonald, Thomas Zeng, Martin Hirst, Connie J Eaves, and Marco A Marra. Application of massively parallel sequencing to microrna profiling and discovery in human embryonic stem cells. Genome Res, 18(4):610-621, Apr 2008. [ bib | DOI | http | .pdf ]
MicroRNAs (miRNAs) are emerging as important, albeit poorly characterized, regulators of biological processes. Key to further elucidation of their roles is the generation of more complete lists of their numbers and expression changes in different cell states. Here, we report a new method for surveying the expression of small RNAs, including microRNAs, using Illumina sequencing technology. We also present a set of methods for annotating sequences deriving from known miRNAs, identifying variability in mature miRNA sequences, and identifying sequences belonging to previously unidentified miRNA genes. Application of this approach to RNA from human embryonic stem cells obtained before and after their differentiation into embryoid bodies revealed the sequences and expression levels of 334 known plus 104 novel miRNA genes. One hundred seventy-one known and 23 novel microRNA sequences exhibited significant expression differences between these two developmental states. Owing to the increased number of sequence reads, these libraries represent the deepest miRNA sampling to date, spanning nearly six orders of magnitude of expression. The predicted targets of those miRNAs enriched in either sample shared common features. Included among the high-ranked predicted gene targets are those implicated in differentiation, cell cycle control, programmed cell death, and transcriptional regulation.

Keywords: ngs, sirna
[Eulalio2008Getting] Ana Eulalio, Eric Huntzinger, and Elisa Izaurralde. Getting to the root of mirna-mediated gene silencing. Cell, 132(1):9-14, Jan 2008. [ bib | DOI | http ]
MicroRNAs are approximately 22 nucleotide-long RNAs that silence gene expression posttranscriptionally by binding to the 3' untranslated regions of target mRNAs. Although much is known about their biogenesis and biological functions, the mechanisms allowing miRNAs to silence gene expression in animal cells are still under debate. Here, we discuss current models for miRNA-mediated gene silencing and formulate a hypothesis to reconcile differences.

Keywords: sirna
[Didiano2008Molecular] Dominic Didiano and Oliver Hobert. Molecular architecture of a mirna-regulated 3' utr. RNA, 14(7):1297-1317, Jul 2008. [ bib | DOI | http | .pdf ]
Animal genomes contain hundreds of microRNAs (miRNAs), small regulatory RNAs that control gene expression by binding to complementary sites in target mRNAs. Some rules that govern miRNA/target interaction have been elucidated but their general applicability awaits further experimentation on a case-by-case basis. We use here an assay system in transgenic nematodes to analyze the interaction of the Caenorhabditis elegans lsy-6 miRNA with 3' UTR sequences. In contrast to many previously described assay systems used to analyze miRNA/target interactions, our assay system operates within the cellular context in which lsy-6 normally functions, a single neuron in the nervous system of C. elegans. Through extensive mutational analysis, we define features in the known and experimentally validated target of lsy-6, the 3' UTR of the cog-1 homeobox gene, that are required for a functional miRNA/target interaction. We describe that both in the context of the cog-1 3' UTR and in the context of heterologous 3' UTRs, one or more seed matches are not a reliable predictor for a functional miRNA/target interaction. We rather find that two nonsequence specific contextual features beyond miRNA target sites are critical determinants of miRNA-mediated 3' UTR regulation. The contextual features reside 3' of lsy-6 binding sites in the 3' UTR and act in a combinatorial manner; mutation of each results in limited defects in 3' UTR regulation, but a combinatorial deletion results in complete loss of 3' UTR regulation. Together with two lsy-6 sites, these two contextual features are capable of imparting regulation on a heterologous 3' UTR. Moreover, the contextual features need to be present in a specific configuration relative to miRNA binding sites and could either represent protein binding sites or provide an appropriate structural context. We conclude that a given target site resides in a 3' UTR context that evolved beyond target site complementarity to support regulation by a specific miRNA. The large number of 3' UTRs that we analyzed in this study will also be useful to computational biologists in designing the next generation of miRNA/target prediction algorithms.

Keywords: sirna
[Baek2008impact] Daehyun Baek, Judit Villén, Chanseok Shin, Fernando D Camargo, Steven P Gygi, and David P Bartel. The impact of micrornas on protein output. Nature, 455(7209):64-71, Sep 2008. [ bib | DOI | http | .pdf ]
MicroRNAs are endogenous approximately 23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3' untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.

Keywords: sirna
[Brodersen2009Revisiting] Peter Brodersen and Olivier Voinnet. Revisiting the principles of microrna target recognition and mode of action. Nat Rev Mol Cell Biol, 10(2):141-148, Feb 2009. [ bib | DOI | http | .pdf ]
MicroRNAs (miRNAs) are fundamental regulatory elements of animal and plant gene expression. Although rapid progress in our understanding of miRNA biogenesis has been achieved by experimentation, computational approaches have also been influential in determining the general principles that are thought to govern miRNA target recognition and mode of action. We discuss how these principles are being progressively challenged by genetic and biochemical studies. In addition, we discuss the role of target-site-specific endonucleolytic cleavage, which is the hallmark of experimental RNA interference and a mechanism that is used by plant miRNAs and a few animal miRNAs. Generally thought to be merely a degradation mechanism, we propose that this might also be a biogenesis mechanism for biologically functional, non-coding RNA fragments.

Keywords: sirna

This file was generated by bibtex2html 1.97.